• Title/Summary/Keyword: 파고라

Search Result 941, Processing Time 0.034 seconds

Characteristics on the Extreme Value Distributions of Deepwater Design ave Heights off the Korean Coast (한국 연안 심해 설계파고의 극치분포 특성)

  • Shin Taek Jeong;Jeong Dae Kim;Cho Hong Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.130-141
    • /
    • 2004
  • For a coastal or harbor structure design, one of the most important environmental factors is the appropriate design wave condition. Especially, the information of deepwater wave height distribution is essential for reliability design. In this paper, a set of deep water wave data obtained from KORDI(2003) were analyzed for extreme wave heights. These wave data at 67 stations off the Korean coast from 1979 to 1998 were arranged in the 16 directions. The probability distributions considered in this research were the Weibull, the Gumbel, the Log-pearson Type-III, and Lognormal distribution. For each of these distributions, three parameter estimation methods, i.e. the method of moments, maximum likelihood and probability weighted moments, were applied. Chi-square and Kolmogorov-Smirnov goodness-of-fit tests were performed, and the assumed distribution was accepted at the confidence level 95%. Gumbel distribution which best fits to the 67 station was selected as the most probable parent distribution, and optimally estimated parameters and 50 year design wave heights were presented.

Characteristics of Wave Attenuation with Coastal Wetland Vegetation (연안 습지식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • As a transition region between ocean and land, coastal wetlands are significant ecosystems that maintain water quality, provide natural habitat for a variety of species, and slow down erosion. The energy of coastal waves and storm surges are reduced by vegetation cover, which also helps to maintain wetlands through increased sediment deposition. Wave attenuation by vegetation is a highly dynamic process and its quantification is important for understanding shore protection and modeling coastal hydrodynamics. In this study, laboratory experiments were used to quantify wave attenuation as a function of vegetation type as well as wave conditions. Wave attenuation characteristics were investigated under regular waves for rigid model vegetation. Laboratory hydraulic test and numerical analysis were conducted to investigate regular wave attenuation through emergent vegetation with wave steepness ak and relative water depth kh. The normalized wave attenuation was analyzed to the decay equation of Dalrymple et al.(1984) to determine the vegetation transmission coefficients, damping factor and drag coefficients. It was found that drag coefficient was better correlated to Keulegan-Carpenter number than Reynolds number and that the damping increased as wave steepness increased.

Case Study on the State of Sea Surface with Low Atmospheric Pressure and Typhoon Conditions over the fellow Sea (저기압 및 태풍 통과시 서해상의 해상상태 사례 분석)

  • Pang, Ig-Chan;Lee, Ho-Man;Kim, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.277-288
    • /
    • 2004
  • In this study, state of sea surface were analyzed comparatively for cases of low atmospheric pressure, which occurred in the middle area of China and moved eastward to the Korean Peninsula across the Yellow sea during April 9-12, 1999, and typhoons 'NEIL' May 1999 and 'OLGA' July 1999, which moved northward along the west coast of the Korean Peninsula. In cases of low pressure, wind speeds and phases were respectively stronger and faster in the center area than in the surrounding areas. The wave heights seem to a somewhat differing tendency from that of the wind speeds due to the influences of geometry. On the other hand, wave heights were lower under typhoon weather than under low pressures, except the instance of wave height over 5 m on Chilbal when typhoon Olga pass northward from the southern area. Storm surges also showed larger amplitudes under low pressures than under typhoons. The results suggest that wave sand storm surges may be larger for a slow passing synoptic low pressures than for a fast passing local typhoon.

Behavior of Non-buoyant Round Jet under Waves (파랑수역에서 비부력 원형 제트의 거동)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.596-605
    • /
    • 2007
  • The behavior of a non-buoyant turbulent round jet discharging horizontally was investigated experimentally. The instantaneous velocity field of the jet was obtained using the particle image velocimetry (PIV) method and used to calculate the mean velocity field by phase-averaging. This study tested regular waves with a relatively small wave height for a wavy environmental flow. The centerline and cross-sectional velocity profiles were reported to demonstrate the effect of the waves on the jet diffusion in respect of wave height and wave phase. The wave phase effect was studied for three phases: zero-upcrossing point, zero-downcrossing point, trough. From the results, it is found that the centerline velocity decreases and width of the cross-sectional profile increases as the wave height increases. In addition, the self-similarity of the cross-sectional profile appears to break down although the width of each case along the axial distance does not vary significantly. The phase effect is found to be relatively small compared to the wave height effect.

Change of Nearshore Random Waves in Response to Sea-level Rise (해수면 상승에 따른 연안 지역 불규칙파의 변화)

  • Cheon, Se-Hyeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.244-254
    • /
    • 2013
  • In this study, a method has been developed for estimating the change of nearshore random waves in response to sea-level rise, by extending the method proposed for regular waves by Townend in 1994. The relative changes in wavelength, refraction coefficient, shoaling coefficient, and wave height for random waves are presented as functions of relative change in water depth. The changes in wavelength and refraction coefficient are calculated by using the significant wave period and principal wave direction in the regular-wave formulas. On the other hand, the changes in shoaling coefficient and wave height are calculated by using the formulas proposed for shoaling and transformation of random waves in the nearshore area including surf zone. The results are proposed in the form of both formulas and graphs. In particular, the relative change in wave height is compared with the result for regular waves.

Wave Height Measurement System Based on Wind Wave Modeling (풍랑 모델링을 기반으로 한 실시간 파고 측정 시스템)

  • Lee, Jung-Hyun;Lee, Dong-Wook;Heo, Moon-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.166-172
    • /
    • 2012
  • The standard wave height measurement system is usually based on spectrum analysis for measuring wave height. The spectrum analysis is complicated because of the FFT, and the FFT is not for real time processing since it requires the saved data segments. In this paper, we carried out the performance evaluation of real-time and simpler wave height measurement system using the kalman filter and inertial sensors. The kalman filter theory is complicated, but its algorithm is simpler than the FFT and the kalman filter is used to estimate wave height by integrating acceleration data. But the accumulated error is occurred when the acceleration data is integrated. We developed the algorithm using the wind wave characteristic to decrease the accumulated error. In this paper, the performance evaluation of the wave height measurement system is carried out for various wind wave conditions. Through the experiments, we verified that it shows high measurement performance with the 3.5% margin of error in wind wave condition.

A Study on the Characteristics of Large Amplitude Ocean Waves (대진폭 해양파의 특성에 대한 연구)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • In this paper time series wave data which contain a freak wave is investigated. Various wave characteristics are compared between wave data with a freak wave and without. Among 24 hour wave data measured in the Yura Sea, two adjacent 30 min wave data with and without a freak wave are examined intensively. It is seen that the highest waves do not have the longest wave period. The wave period of the longest period waves is a little longer than the average wave period and much shorter than the significant wave period. Although the sea state is quite high, the Rayleigh distribution fits well to the probability of wave height. The characteristics of the wave spectra do not change much, but the nonlinearity increases for the wave data with a freak wave. The significant wave height without a freak wave is larger than that with a freak wave. Hence, the higher significant wave height does not always increase the probability of the occurrence of the freak waves.

  • PDF

Measurement of Liquid Oscillation in Tuned Liquid Dampers using a Laser Doppler Vibrometer (레이저진동계를 사용한 동조액체댐퍼의 액체 진동 측정)

  • Shin, Yoon-Soo;Min, Kyung-Won;Kim, Junhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.513-519
    • /
    • 2016
  • In this study, dynamic vertical displacement of liquid in the tuned liquid column damper(TLCD) is measured by a laser Doppler vibrometer(LDV) to overcome limitations of existing sensors and to leverage noncontact sensing. Addressing advantages of noncontact measurements, operational principles of the LDV to measure velocity and displacement of a target object in motion is explained. The feasibility of application of the LDV to measurement of liquid motion in the TLCD is experimentally explored. A series of shake table tests with the TLCD are performed to determine requirements of application of the LDV. Based on the experimental results, it is proved that the LDV works under the condition of adding dye to the liquid by increasing the intensity of reflected laser and thus validity is verified by comparison with a conventional wave height meter.

On the Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters Using a Regular Wave Model (규칙파 모델을 이용한 유공케이슨 방파제로부터의 불규칙파 반사율 산정에 대하여)

  • 서경덕;손상영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • In this paper we examine several methods tor calculating the reflection of irregular waves from a perforated-wall caisson breakwater using a regular wave model. The first method is to approximate the irregular waves as a regular wave whose height and period are the same as the root-mean-squared wave height and significant wave period, respectively, of the irregular waves. The second is to use the regular wave model, repeatedly, for each frequency component of the irregular wave spectrum. The wave period is determined according to the frequency of the component wave, and the root-mean-squared wave height is used for all the frequencies. The third method is the same as the second one except that the wave height corresponding to the energy of each component wave is used. Comparison with experimental data from previous authors shows the second method is the most adequate, giving reasonable agreement in both frequency-averaged reflection coefficients and reflected wave spectra.

Transition Characteristics of Long Period Waves by Field Observation (현장관측에 의한 장주기파의 천이특성)

  • 김규한;김덕중;류형석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.34-40
    • /
    • 2002
  • In order to estimate the height of long period wave from character of deep water wave, field observation is carried out three wave gauge are arranged by a straight line from the seashore to offshore direction and the result is analyzed. In addition, the existing theory of the mechanism for long period wave producer is verified by field observation, and the relation between deep water wave and long period wave of shallow area is examined. Observed long period wave is coincided with the existing theory for the most part. In order to add the change of time and space of long period wave, the height of long period wave is calculated by the composition of long period wave in each position. As a result, the relation of long period wave and deep water wave is presented more clear. Estimate formula is drew through them.