• Title/Summary/Keyword: 팁 와류

Search Result 20, Processing Time 0.026 seconds

Numerical Investigation of Effects of Tip Clearance Height on Fan Performance and Tip Clearance Flow in an Axial Fan of the Cooling Tower (냉각탑용 축류팬의 팁 간격이 팬 성능 및 틈새 유동에 미치는 영향에 관한 수치해석적 연구)

  • Oh, Keon-Je
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.44-50
    • /
    • 2012
  • 팁 간격의 크기가 냉각탑용 축류팬의 성능과 누설 유동에 미치는 영향을 조사하기 위해서 서로 다른 2가지 팁 간격을 가진 경우에 대해서 점성유동을 해석하였다. 케이싱 내에서 작동하는 축류팬 주위의 유동을 연속방정식, Navier-Stokes 방정식 등을 지배방정식으로 사용하여 수치해석 하였다. 난류유동에 나타나는 레이놀즈 응력은 ${\kappa}-{\epsilon}$ 난류모델을 사용하여 계산하였다. 전체적으로 H형 격자계를 사용하였으며, 팁 주위의 유동을 해석하기 위해서 팁 영역 주위에 부분적으로 조밀한 격자를 두었다. 팁 간격이 증가하면 누설 유동의 증가로 인한 유동 손실의 증가로 전압상승과 수력효율이 감소하였다. 팬 직경에 대한 팁 간격이 0.4%에서 1.0%로 증가하면 전압상승 값이 약 10% 정도 감소하였으며, 수력효율은 약 3% 정도 감소하였다. 팁 간격이 팁 근처 날개 주위의 압력에 미치는 영향을 보면, 팁 간격이 증가하여 누설 유동이 증가하면 흡입면과 압력면의 압력차가 전연 부근에서 감소함을 알 수 있었다. 누설 와류의 중심은 코드를 따라서 흡입면으로 부터 떨어져 나가면서 형성됨을 알 수 있었다. 누설 와류의 위치를 보면 팁 간격이 증가하면 와류 중심의 위치가 흡입면 쪽으로 이동하고, 흡입면에서 떨어진 거리도 날개 후반부에서 증가 폭이 커지는 포물선 형태로 증가함을 알 수 있었다.

A study of Main Rotor Blade Tip shape and analysis of flow around Main Rotor Blade Tip (Main Rotor Blade Tip 형상 변화에 따른 유동분석)

  • Kim, Se-Il
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.382-386
    • /
    • 2013
  • 본 연구에서는 Main Rotor Blade Tip 형상 변화에 따른 후류해석을 통해 와류 생성 및 주변 유동을 분석하여 블레이드 팁 형상의 변화가 와류 간섭을 감소시키는지의 여부를 확인하였다. EDISON CFD를 이용하여 블레이드 Blade Tip 형상에 따라 유동이 어떻게 나타나며, Blade 후류의 압력과 점성의 변화를 분석하여 와류의 양상을 해석하였다. 비교 Blade 형상은 2세대 긴 직사각형 모형, KUH 수리온의 Blade, 유로콥터사의 'Blue Edge'로 비교적 최근에 개발된 대표적인 Blade Tip 형상 3개로 정하였다. 결과를 토대로 블레이드 뒷전의 와류흐름 양상을 확인하여 블레이드 와류 간섭현상의 감소를 확인하였다.

  • PDF

Characteristics of Tip Vortex by Blade Loading (Blade Loading에 의한 팁와류의 특성)

  • Yoon, Yong Sang;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.273-278
    • /
    • 2002
  • The characteristics of tip vortex within a blade tip region were examined experimentally in various flow coefficients by the way of changing tip clearance and blade stagger angle in an axial Low Speed Research Compressor(LSRC). The objective was to identify the unsteady pressure distribution in the blade passage by ensemble average technique acquired from high-frequency response pressure transducers and the tip vortex by root mean square value(RMS value). Data were reduced statistically using phase-lock technique for detailed pressure distributions.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss in the Tip-Leakage Flow Region of a Turbine Blade with Pressure-Side Winglet and Suction-Side Squealer (압력면윙렛/흡입면스퀼러형 터빈 동익 팁누설영역에서의 3차원유동 및 압력손실)

  • Cheon, Joo Hong;Kang, Dong Bum;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a turbine blade equipped with both a pressure-side winglet and a suction-side squealer have been measured for the tip gap-to-span ratio of h/s = 1.36%. The suction-side squealer has a fixed height-to-span ratio of $h_s/s$ = 3.75% and the pressure-side winglet has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results are compared with those for a plane tip and for a cavity squealer tip of $h_{ps}/s$ = 3.75%. The present tip delivers lower loss in the passage vortex region but higher loss in the tip-leakage vortex region, compared to the plane tip. With increasing w/p, its mass-averaged loss tends to be reduced. Regardless of w/p, the present tip provides lower loss than the plane tip but higher loss than the cavity squealer tip.

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-flow Turbomachinery (축류형 유체 기계에서 팁 누설 유동 해석을 위한 난류 모델 성능 비교)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2162-2167
    • /
    • 2003
  • It is well-known that high anisotropic characteristic of turbulent flow field is dominant inside tip leakage vortex. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence model based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from steady-state Reynolds averaged Navier-Stokes simulations based on the RNG ${\kappa}-{\varepsilon}$ and the Reynolds stress model in two test cases, such as a linear compressor cascade and a forward-swept axial-flow fan, are compared with experimental data. Through the comparative study of turbulence models, it is clearly shown that the Reynolds stress model, which can express the production term and body-force term induced by system rotation without any modeling, should be used to predict the complex tip leakage flow, including the locus of tip leakage vortex center, quantitatively.

  • PDF

An Analysis of the Flow Characteristics in the Tip Clearance of Axial Flow Rotor (축류 회전차 팁 틈새에서의 유동특성 해석)

  • 정재구;이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.735-745
    • /
    • 2004
  • A linear cascade of NACA 65-1810 profiles are investigated for tip leakage flow characteristics. and calculation results are compared with experimental result. STAR-CD commercial code was used to solve the three dimensional incompressible Navier-Stokes equation that was adopted for steady flow and high Reynolds $\kappa$- $\varepsilon$turbulent model. Numerical calculation of a linear cascade is carried out to investigate effect of tip clearance on pitchwise variations of velocity Profiles. and static pressure distributions on the blade surface at spanwise positions. In case of evolution of tip vortex core location. tip vortex geometry and static pressure at the center of the tip vortex core compared with experimental results. Calculation results are agreed well with the experimental data, and validated. The static pressure losses by tip leakage flow at 2% tip clearance were more than those at 1% tip clearance.

Comparison of Discrete Noise with Broadband Noise from Small-scaled UH-1H Rotor (축소형 UH-1H 로터에서의 광역소음과 이산소음의 비교)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.20-25
    • /
    • 2005
  • The thickness, loading, and broadband noise generated from the trailing edge of the UH-1H main rotor are numerically compared each other. The Kocureck and Tangler's prescribed wake model is adopted to represent the wake geometry during the hovering motion. Three tip Mach numbers of $M_{T}$ = 0.2, 0.4, and 0.8, are selected to analyze the effects of different tip Mach numbers. At $M_{T}$ = 0.8, in considering the A-weighting and audible frequency band, the random noise is smaller than the tonal noises such as the thickness and the loading noise which have the low frequency characteristics. Especially most of the random noise frequency spread on the ultrasound region. On the other hand, below $M_{T}$ = 0.4, the band of random noise moves to the audible frequency region, and the random noise becomes larger than the tonal noise. It turns out that the random noise analysis of the rotor should be necessary at low speed operating condition.

Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan (전향 스윕 축류형 팬에서의 팁 누설 유동 구조)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.131-136
    • /
    • 2002
  • A computational analysis using Reynolds stress model in FLUENT is conducted to give a clear understanding of the effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan at design condition ($\phi$=0.25) and off-design condition ($\phi$=0.21 and 0.30). The roll-up of tip leakage flow starts near the minimum static wall pressure position, and the tip leakage vortex developes along the centerline of the pressure trough within the blade passages. Near tip region, a reverse flow induced by tip leakage vortex has a blockage effect on the through-flow. As a result, high momentum region is observed below the tip leakage vortex. As the blade loading increases, the reverse flow region is more inclined toward circumferential direction and the onset position of the rolling-up of tip leakage flow moves upstream. Because the casing boundary layer becomes thicker, and the mixing between the through-flow and the leakage jet with the different flow direction is enforced, the streamwise vorticity decays more fast with blade loading increasing. The computational results show that a distinct tip leakage vortex is observed downstream of the blade trailing edge at $\phi$=0.30, but it is not observed at $\phi$=0.21 and 0.25.

  • PDF

Effect of Blade Loading on the Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan (블레이드 하중이 축류형 팬에서의 팁 누설 유동구조에 미치는 영향)

  • 이공희;명환주;백제현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.294-304
    • /
    • 2003
  • An experimental analysis using three-dimensional laser Doppler velocimetry(LDV) measurement and computational analysis using the Reynolds stress model in FLUENT are conducted to give a clear understanding of the effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition ($\Phi$=0.25) and two off-design conditions ($\Phi$=0.21 and 0.30). As the blade loading increases, the onset position of the rolling-up of tip leakage flow moves upstream and the trajectory of tip leakage vortex center is more inclined toward the circumferential direction. Because the casing boundary layer becomes thicker and the mixing between the through-flow and the leakage jet with the different flow direction is enforced, the streamwise vorticity decays more fast with the blade loading increasing. A distinct tip leakage vortex is observed downstream of the blade trailing edge at $\Phi$=0.30, but it is not observed at $\Phi$=0.21 and 0.25.

3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE (풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계)

  • Jeong, Jae-Ho;Yoo, Cheol;Lee, Jung-Sang;Kim, Ki-Hyun;Choi, Jae-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF