• Title/Summary/Keyword: 틸트로터

Search Result 101, Processing Time 0.021 seconds

Technical Review of the Proposed Engines for SUAV (스마트무인기 후보엔진 기술검토)

  • Jun Yong-Min;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.64-71
    • /
    • 2006
  • For SUAV is required to have the capacity of VTOL and fast forward flight, the SUAV development program has decided to adopt the tiltrotor mechanism which includes helicopter and turboprop mechanisms. From the engine point of view, the key engine parameters such as engine operating mechanism, engine control scheme, the dynamics characteristic of power train, engine intake/exhaust concept, and engine installation requirements should fulfill the requirements of the two different mechanisms, helicopter and turboprop. And for the maximum efficiency of the rotor, rotational speed for the two modes are 20% different, the power train shall find a way to make it so. Meeting these specific requirements for the tiltrotor mechanism, this research begins with a conventional OTS(off-the-shelf) turboshaft engine survey and minimizes engine modification to develop an economical propulsion system. The engine technical review has been performed on the basis of those requirements and capabilities.

Analysis of Flight Test Result for Control Performance of Smart UAV (스마트무인기의 비행제어 성능관련 비행시험 결과분석)

  • Kang, Young-Shin;Park, Bun-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.22-31
    • /
    • 2013
  • Flight tests on flight control performance of helicopter, conversion and airplane mode for the Smart UAV were completed. Automatic take-off and landing, automatic return home as well as automatic approach to hover were performed in helicopter mode. Climb/descent, left/right turn using speed and altitude hold mode were performed in each $10^{\circ}$ tilt angle in conversion mode. The rotor speed in airplane mode was reduced to 82% from 98% RPM in order to increase rotor efficiency with reducing Mach number at tip of rotors. It reached to the designed maximum speed, $V_{TAS}$=440 km/h at 3 km altitude. This paper presents the flight test result on full envelopment of Smart UAV. Detailed test plan and test data on control performance were also presented to prove that all data meets the flying qualities requirement.

Numerical Analysis on Aerodynamic Performances and Characteristics of Quad Tilt Rotor during Forward Flight (전진 비행하는 쿼드 틸트 로터의 공력성능 및 특징에 대한 수치적 연구)

  • Lee, Seonggi;Oh, Sejong;Choi, Seongwook;Lee, Yunggyo;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.197-209
    • /
    • 2018
  • In this study, numerical analyses on Quad Tilt Rotor(QTR) are carried out to investigate the interference effect of components and effect of operating condition during forward flight. Actuator Surface Method(ASM) which is implemented in an open source CFD code, OpenFOAM, is used to calculate the flow field around QTR with high computational efficiency. The lift of the front and rear wing is found to increase or decrease depending on the rotation direction of the rotor. At the rear wing, the interference effects of the front and rear rotor appear as a combined manner. Performance change due to the phase difference is found to be insignificant. For both rotors, the locally higher thrust is generated by the blockage effect of the wing. The interference effect of wake from the front nacelle contributes to higher local thrust for the rear rotor compared to the front rotor. And it is observed that the amplitude of thrust oscillation can decrease depending on the phase difference between the rotors. Aerodynamic performances of both rotors and the entire aircraft were compared and analyzed for various operating conditions.

Conceptual Design and Aerodynamic Analysis of Double-Seater Tilt-rotor Type PAV (2인승 틸트로터형 PAV 개념설계 및 공력해석)

  • Cho, Yoon-Sung;Kim, Sung-Ji;Baek, Su-Been;Kim, Yeong-Chae;Bae, Geun-Hak;Cho, Eun-Byeol;Yu, Ji-Soo;Hong, Young-Hun
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.144-160
    • /
    • 2022
  • Research on urban air mobility (UAM) is being actively conducted as a method of next-generation transportation. eVTOL, an airplane to be used for urban air mobility, is classified into a complex type, a tilt rotor type, a tilt wing type, a tilt duct fan type, and a multicopter type according to the propulsion method. In this study, conceptual design was performed for the next generation eVTOL of the new tilt rotor type in accordance with the existing design requirements. The aerodynamic analysis programs of OpenVSP and XFLR5 were used to perform aerodynamic analysis. The power required for each flight mission stage was calculated, the battery and motor were selected accordingly, and MTOW (Maximum Take-Off Weight) was predicted by estimating the weight of each component.

Automatic Landing Flight Test of TR-60 Tilt Rotor UAV based on RTK GPS (RTK GPS 기반 TR-60 틸트로터무인기 자동착륙 비행시험)

  • Yu, Chang-Seon;Jang, Eun-Yeong;Song, Bok-Seop;Jo, Am;Park, Beom-Jin;Kim, Yu-Sin;Gang, Yeong-Sin;Choe, Seong-Uk;Gu, Sam-Ok
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.30-34
    • /
    • 2016
  • TR-60 틸트로터 무인기는 전장 3m, 최대이륙중량 200kg로서 2013년 2월 자동천이비행에 성공한 비행체로서 현재 해상운용을 위한 함상이착륙기술을 개발 중에 있다. 무인기 해상운용은 육상보다 심한 염무와 바람과 선박의 운동에 의한 착륙대의 이동 등의 열악한 환경에서 이루어져야 한다. 이동이 있는 착륙대와 착륙장 주변의 장애물을 고려하면 정확한 착륙을 위한 정밀한 항법유도가 요구된다. TR-60의 정밀항법유도를 위해서 수cm 단위의 정확도를 갖는 RTK GPS 기반의 정밀상대항법과 이동 착륙장 대한 자동착륙유도를 설계하고 구현함으로 함상자동 이착륙 기술을 개발하였다. 본 논문에서는 RTK GPS 기반의 정밀상대항법과 자동착륙유도에 대한 연구와 함상접근착륙절차에 따른 자동착륙정확도 측정 비행시험 결과를 기술하였다.

  • PDF

Design of Gimbal Hub for Smart UAV Tilt Rotor (스마트무인기 틸트로터용 짐발허브 설계)

  • Lee, Joo-Young;Kim, Jai-Moo;Lee, Myeong-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.625-634
    • /
    • 2007
  • KARI SUAV program was initiated to develop a Smart Unmanned Aerial Vehicle with innovative smart technologies. SUAV is a tilt rotor aircraft of which rotor system is 3-bladed, gimbaled hub type. Several existing concepts of gimbaled hub were analyzed and compared to investigate the applicability to SUAV rotor system design. From the result of these investigations, it was concluded that a new design concept of low cost and high reliability characteristics was necessary for the rotor hub development of SUAV. The design requirements of new gimbal hub concept and the design results were presented. Also, the analysis results to verify the satisfaction of design requirements of SUAV rotor system were presented.

Prop-blade Cross Section Design for QTP-UAV (쿼드 틸트 프롭로터 무인기용 프롭-블레이드 단면 설계)

  • Kim, Taejoo;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.845-855
    • /
    • 2018
  • Cross section design of a prop-blade is carried out for VTOL(Vertical Takeoff and Landing) Quad Tilt Prop-rotor UAV with a maximum takeoff weight of 55 kg and a maximum cruising speed of 180 km/h. Design procedure for cross section design is established and design requirements for prop-blade are identified. Through the procedure, cross section design is carried out to meet the identified requirements. Main design factors including stiffness, weight per unit length, and elastic axis are obtained by using a finite element section analysis program, and the design weight of the prop-blade is predicted. The obtained design factors are used along with the rotor system analysis program CAMRAD II to evaluate the dynamic stability of prop-blade in operating environment. In addition, the prop-blade load is obtained by CAMRAD II software, and it is used to verify the safety of the prop-blade structure. If the design results are not satisfactory, design changes are made in an iterative manner until the results satisfy the design requirements.

Unsteady Flow Simulation of the Smart UAV Proprotor (스마트무인기 프롭로터 비정상 유동해석)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.415-421
    • /
    • 2006
  • The unsteady flow calculation around the proprotor of Smart UAV was conducted. Using the flight scenario of SUAV which composed of hover, transition, and airplane mode, the aerodynamic analysis of proprotor were performed for the variation of collective pitch, rpm, forward speed, and tilt angle. The unsteady compressible Navier-Stokes equations were used for the calculation and the dynamic overset grid technique was applied for the rotating proprotor. The aerodynamic performance of proprotor calculated in this way were validated by comparing with the performance data obtained from the blade element momentum method.

  • PDF

Fatigue Analysis based on Kriging for Flaperon Joint of Tilt Rotor Type Aircraft (틸트 로터형 항공기의 플랩퍼론 연결부에 대한 크리깅 기반 피로해석)

  • Park, Young-Chul;Jang, Byoung-Uk;Im, Jong-Bin;Lee, Jung-Jin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.541-549
    • /
    • 2008
  • The fatigue analysis is performed to avoid structural failure in aerospace structures under repeated loads. In this paper, the fatigue life is estimated for the design of tilt rotor UAV. First of all, the fatigue load spectrum for tilt rotor UAV is generated. Fatigue analysis is done for the flaperon joint which may have FCL(fracture critical location). Tilt rotor UAV operates at two modes: helicopter mode such as taking off and landing; fixed wing mode like cruising. To make overall fatigue load spectrum, FELIX is used for helicopter mode and TWIST is used for fixed wing mode. The other hand, the Kriging meta model is used to get S-N regression curve for whole range of material life when S-N test data are analyzed. And then, the second order of S-N curve is accomplished by the least square method. In addition, the coefficient of determination method is used to ensure how accuracy it has. Finally, the fatigue life of flaperon joint is compared with that obtained by MSC. Fatigue.