• Title/Summary/Keyword: 티타늄합금

Search Result 225, Processing Time 0.04 seconds

Photoelectrochemical Characteristics at the Titanium Oxide Electrode with Light Intensity and pH of the Solution (산화 티타늄 전극의 광학농도와 pH에 따른 광전기화학적 특성)

  • Park, Seong-Yong;Cho, Byung-Won;Yun, Kyung-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.255-262
    • /
    • 1994
  • Arc melted Ti-5Bi alloy was oxidized by thermal oxidation method. In the present study free energy efficiency(${\eta}_e$) of titanium oxide electrode(TOE) was measured as a function of light intensity and light energy. Flat-band potential of TOE was measured as a function of the light intensity and the solution pH. The ${\eta}_e$ of TOE increased with the increase of light intensity and tight energy to maximum value of 3.2% and 13%, respectively, at $0.2W/cm^2$ and 4.0eV. The ${\eta}_e$ was strongly dependent on the magnitude of the bias voltage. Maximum value was found at 0.5V bias. Photocurrent of TOE was controlled by electron-hole pair generation in depletion layer. The flat-band potential of the illuminated TOE shifted to -0.065V/decade with increasing light intensity. With the decrease of pH of electrolyte, flat-band potential shifted to anodic direction. The experimental slope was in good agreement with the Nernstian value of 0.059V/pH decade.

  • PDF

Comparative Study on Ablation Characteristics of Ti-6Al-4V Alloy and Ti2AlN Bulks Irradiated by Femto-second Laser (펨토초 레이저에 의한 티타늄 합금과 티타늄질화알루미늄 소결체의 어블레이션특성 비교연구)

  • Hwang, Ki Ha;Wu, Hua Feng;Choi, Won Suk;Cho, Sung Hak;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.97-103
    • /
    • 2019
  • Mn+1AXn (MAX) phases are a family of nano-laminated compounds that possess unique combination of typical ceramic properties and typical metallic properties. As a member of MAX-phase, $Ti_2AlN$ bulk materials are attractive for some high temperature applications. In this study, $Ti_2AlN$ bulk with high density were synthesized by spark plasma sintering method. X-ray diffraction, micro-hardness, electrical and thermal conductivity were measured to compare the effect of material properties both $Ti_2AlN$ bulk samples and a conventional Ti-6Al-4V alloy. A femto-second laser conditions were conducted at a repetition rate of 6 kHz and laser intensity of 50 %, 70% and 90 %, respectively, laser confocal microscope were used to evaluate the width and depth of ablation. Consequently, the laser ablation result of the $Ti_2AlN$ sample than that of the Ti-6Al-4V alloys show a considerably good ablation characteristics due to its higher thermal conductivity regardless of to high densification and high hardness.

STRESS DISTRIBUTION OF THREE NITI ROTARY FILES UNDER BENDING AND TORSIONAL CONDITIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS (세가지 니켈 티타늄 파일의 휨과 비틀림 조건에서의 응력 분포에 관한 3차원 유한요소 연구)

  • Kim, Tae-Oh;Lee, Chan-Joo;Kim, Byung-Min;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.323-331
    • /
    • 2008
  • Flexibility and fracture properties determine the performance of NiTi rotary instruments. The purpose of this study was to evaluate how geometrical differences between three NiTi instruments affect the deformation and stress distributions under bending and torsional conditions using finite element analysis. Three NiTi files (ProFile .06 / #30, F3 of ProTaper and ProTaper Universal) were scanned using a Micro-CT. The obtained structural geometries were meshed with linear, eight-noded hexahedral elements. The mechanical behavior (deformation and von Mises equivalent stress) of the three endodontic instruments were analyzed under four bending and rotational conditions using ABAQUS finite element analysis software. The nonlinear mechanical behavior of the NiTi was taken into account. The U-shaped cross sectional geometry of ProFile showed the highest flexibility of the three file models. The ProTaper, which has a convex triangular cross-section, was the most stiff file model. For the same deflection, the ProTaper required more force to reach the same deflection as the other models, and needed more torque than other models for the same amount of rotation. The highest von Mises stress value was found at the groove area in the cross-section of the ProTaper Universal. Under torsion, all files showed highest stresses at their groove area. The ProFile showed highest von Mises stress value under the same torsional moment while the ProTaper Universal showed the highest value under same rotational angle.

The Effect of Alkali- and Heat-Treated Titanium Surfaces on Differentiation of Osteoblast (티타니움 표면의 알칼리-열처리가 골모세포의 분화에 미치는 영향)

  • Kang, Choong Hee;Vang, Mong-Sook;Yang, Hong-so;Park, Sang-Won;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.293-306
    • /
    • 2009
  • In this study, the biological response of fetal rat calvarial cells on alkali- and heat-treated titanium was assessed. The results were as follows; Cell proliferation on alkali- and heat-treated surfaces showed significantly higher level than on the titanium-6aluminum-4vanadium (weight percentage: 6 % aluminum, 4 % vanadium, Ti-6Al-4V) surface (p<0.01). In ELISA analysis, concentration of $IL-1{\beta}$ and IL-6 were raised when the cells were grown to day 7. Pre-treatment with herbimycin, a known tyrosine kinase inhibitor, suppressed the production of IL-6 (p<0.01). In comparison to commercially pure titanium (grade II, cp-Ti) and Ti-6Al-4V alloy, alkali- and heat-treated titanium enhanced alkaline phosphatase activity (p<0.001). In RT-PCR analysis, alkaline phosphatase, bone sialoprotein, receptor activated nuclear factor ligand mRNA expression was increased alkali- and heat-treated titanium. Herbimycin and SB203580, p38 MAPK inhibitor, were repressed of $IL-1{\beta}-induced$ IL-6 mRNA expression. These results suggest that alkali- and heat-treated titanium stimulate osteoblasts differentiation and facilitate bone remodeling.

Influence of Implant Abutment Systems on Detorque Value and Screw Joint Stability (임플랜트 지대주 종류가 나사풀림력과 연결부의 안정성에 미치는 영향)

  • Bae, Byung-Ryong;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.97-109
    • /
    • 2010
  • Purpose : This study was designed to evaluate the influence of implant abutment materials on detorque value and screw joint stability before and after dynamic fatigue test. Materials & Methods : The external hexagonal fixture and three different groups of abutment (titanium abutments, zirconia abutments, and UCLA abutments) were used. The detorque value before loading and after loading (cyclic loading up to $10^5$ cycles) of the abutment screw were measured. Result : 1. There was no significant difference in detorque value before loading among the each group. 2. There was no significant difference in detorque value after loading among the each group. 3. Detorque values before and after cyclic loading in each group were not significantly different. 4. There was no significant difference in loss percentage of removal torque before loading among the each group. 5. There was no significant difference in loss percentage of removal torque after loading among the each group. 6. There was no significant difference in loss percentage of removal torque according to loading among the each group. Conclusion : Short term screw loosening of three types of abutment was not significantly different. When bite force was applied, there was no significant difference in screw loosening between before loading and after loading.

Maxillary cement retained implant supported fixed prosthesis using the millingable Pd-Ag alloy generated by CAD/CAM system: clinical report after two years in service (상악 전부 무치악 환자에서 CAD/CAM 시스템으로 제작되는 Pd-Ag 합금을 이용한 고정성 임플란트 전악 수복 증례)

  • Lee, Jun-Sik;Han, Se-Jin;Choi, Yu-Sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.1
    • /
    • pp.71-80
    • /
    • 2014
  • Full-mouth reconstruction of a patient using dental implants is a challenge if there is vertical and horizontal bone resorption. Therefore, it is should be cautious in making the fixed prostheses that restore the function and the esthetics of the gingiva and teeth. In full mouth rehabilitation, CAD/CAM system makes it possible to fabricate restorations with high precision, regardless of span of the restoration. Recently, Palladium-silver (Pd-Ag) alloy which is highly biocompatible and millingable has been developed to compensate for the shortcomings of the titanium or zirconia. This clinical report presents the reconstruction of a maxillary arch with a cement retained implant supported fixed prosthesis using a Pd-Ag alloy generated by CAD/CAM system on eleven osseointegrated implants. The occluding surfaces were made of Pd-Ag alloy, to decrease the risk of chipping or fracture. The prostheses were esthetically pleasing, and no clinical complications have been reported after two years.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

The Effect of Microstructure and Temperature on Fatigue Crack Propagation in Ti-3A1-2.5V A11oy (Ti-3A1-2.5V 합금의 피로균열전파특성에 미치는 미세조직 및 온도의 영향)

  • 임병수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.58-66
    • /
    • 1997
  • Ti alloys, with the advantageous tensile strength/density ratio and the chemical stability, have been used widely in the aerospace and chemical engineering industries and their usages are still expanding in various industrial areas. In the automotive industry, because of their superior merits of weight reduction and fuel saving, Ti alloys are expected to be used as various part materials including connecting rods, engine valves, springs and retainers, which are all subjected to the fatigue loads. In this study, using Ti-3A1-2.5V, the effects of temperature and microstructure change on fatigue crack propagation has been investigated. Five different microstructures were tested at the temperatures of room temperature, 20$0^{\circ}C$, 30$0^{\circ}C$ and 40$0^{\circ}C$ under the same frequency 20Hz. Some of the conclusions obtained are as follows: (1)Microstructurally, the morphology of less $\alpha$-phase and finer lamellar structure of $\alpha$ and $\beta$-Ti showed better registance to the fatigue crack propagation. (2)Fatigue crack growth rate increased with test temperature.

  • PDF

Analysis of the residual stress as the thickness of thin films and substrates for flexible CIGS solar cell (연성 CIGS 태양전지의 기판과 박막층의 두께에 따른 잔류응력해석)

  • Han, Yoonho;Lee, Minsu;Um, Hokyung;Kim, Donghwan;Yim, Taihong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.116.2-116.2
    • /
    • 2011
  • 연성 CIGS 태양전지를 제작하기 위해서는 휘어지는 연성 기판재의 적용이 반드시 필요하다. 상용되는 연성 기판재로는 플라스틱, 폴리이미드, 금속재가 있다. 그러나 플라스틱과 폴리이미드는 고효율의 CIGS 흡수층을 제조하기 위한 $500{\sim}600^{\circ}C$의 공정에 접합하지 못하다. 금속 기판재의 경우는 몰리브데늄, 알루미늄, 티타늄, 크롬강, 스테인레스강, 합금재 등이 있다. 이러한 금속 기판재 중에서 Fe-Ni 합금재는 Ni 함량의 변화에 따라 기계적, 자기적, 열팽창 특성이 다르게 나타나는 것으로 알려져 있다. 선행 연구에서 CIGS 태양전지의 기판재로 열팽창 계수가 박막층과 유사한 SUS400번 계열과 Fe-52Ni이 적합하다는 것을 확인 하였다. 따라서 본 연구에서는 유한요소해석(Finite element analysis) 프로그램인 Algor를 이용하여 CIGS solar cell을 설계하고 Fe-52Ni 기판재와 절연층인 SiO2, 흡수층인 CIGS의 두께에 따른 Cell의 잔류응력을 해석하였다.

  • PDF

Densification Behavior of Titanium Alloy Powder Under Hot Pressing (고온 금형압축시 티타늄 합금 분말의 치밀화 거동)

  • Yang, Hun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3061-3071
    • /
    • 2000
  • Densification behavior of titanium alloy powder was investigated under hot pressing at various pressures and temperatures. Experimental date were obtained for densification of titanium alloy powder under an instantaneous loading and subsequent creep deformation during hot pressing. The constitutive models of Fleck et al. and the modified Gurson were employed for thermo-phastic deformation under the instantaneous loading and that f Abouaf and co-workers for creep deformation of titanium alloy powder during hot pressing. By implementing these constitutive equations into a finite element program(ABAQUS), finite element results were compared with experimental data during hot pressing. To investigate the effect of friction between the power and die wall, density distributions of power compacts were measured and compared with finite element calculations. Finite element results from the models of Fleck et al. and the modified Gurson agreed reasonably good with experimental data for densification and density distribution of titanium alloy powder under the instantaneous loading during hot pressing. Finite element results from the model of Abouaf and co-workers, however, somewhat overestimate experimental data for creep deformation of power compacts during hot pressing.