• Title/Summary/Keyword: 특징 탐지

Search Result 747, Processing Time 0.028 seconds

Extraction and classification of characteristic information of malicious code for an intelligent detection model (지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류)

  • Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2022
  • In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.

An Efficient Text Detection Model using Bidirectional Feature Fusion (양방향 특징 결합을 이용한 효율적 문자 탐지 모델)

  • Lim, Seong-Taek;Choi, Hoeryeon;Lee, Hong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.67-68
    • /
    • 2021
  • 기존 객체탐지는 경계 상자 회귀방식을 적용하였지만, 문자는 왜곡과 변형이 심한 특성을 가진 객체로 U-net 구조의 이미지 분할 방식을 사용하는 경우가 많다. 따라서 최근 문자 탐지는 통계적 모델에 비해 높은 정확도를 보이는 심층 신경망 기반의 모델 연구가 많이 진행되고 있다. 본 연구에서는 이미지 분할을 통한 양방향 특징 결합 기법을 사용한 문자 탐지 모델을 제안한다. 이미지 분할 방식은 메모리의 효율이 떨어지기 때문에 이를 극복하고자 특징 추출 단계에서 경량화된 네트워크를 적용하였다. 또한, 객체 탐지에서 큰 성과를 보인 양방향 특징 결합 모듈을 U-net 구조에 추가하여 추출된 특징이 효과적으로 결합 되는 결과를 얻었다. 제안하는 모델의 문자 탐지 성능은 합성 문자 데이터셋을 이용한 실험을 통해 기존의 U-net 구조의 이미지 분할 방식보다 향상되었음을 확인하였다.

  • PDF

A Feature Set Selection Approach Based on Pearson Correlation Coefficient for Real Time Attack Detection (실시간 공격 탐지를 위한 Pearson 상관계수 기반 특징 집합 선택 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.59-66
    • /
    • 2018
  • The performance of a network intrusion detection system using the machine learning method depends heavily on the composition and the size of the feature set. The detection accuracy, such as the detection rate or the false positive rate, of the system relies on the feature composition. And the time it takes to train and detect depends on the size of the feature set. Therefore, in order to enable the system to detect intrusions in real-time, the feature set to beused should have a small size as well as an appropriate composition. In this paper, we show that the size of the feature set can be further reduced without decreasing the detection rate through using Pearson correlation coefficient between features along with the multi-objective genetic algorithm which was used to shorten the size of the feature set in previous work. For the evaluation of the proposed method, the experiments to classify 10 kinds of attacks and benign traffic are performed against NSL_KDD data set.

  • PDF

Learning Recurrent Neural Networks for Activity Detection from Untrimmed Videos (비분할 비디오로부터 행동 탐지를 위한 순환 신경망 학습)

  • Song, YeongTaek;Suh, Junbae;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.892-895
    • /
    • 2017
  • 본 논문에서는 비분할 비디오로부터 이 비디오에 담긴 사람의 행동을 효과적으로 탐지해내기 위한 심층 신경망 모델을 제안한다. 일반적으로 비디오에서 사람의 행동을 탐지해내는 작업은 크게 비디오에서 행동 탐지에 효과적인 특징들을 추출해내는 과정과 이 특징들을 토대로 비디오에 담긴 행동을 탐지해내는 과정을 포함한다. 본 논문에서는 특징 추출 과정과 행동 탐지 과정에 이용할 심층 신경망 모델을 제시한다. 특히 비디오로부터 각 행동별 시간적, 공간적 패턴을 잘 표현할 수 있는 특징들을 추출해내기 위해서는 C3D 및 I-ResNet 합성곱 신경망 모델을 이용하고, 시계열 특징 벡터들로부터 행동을 자동 판별해내기 위해서는 양방향 BI-LSTM 순환 신경망 모델을 이용한다. 대용량의 공개 벤치 마크 데이터 집합인 ActivityNet 비디오 데이터를 이용한 실험을 통해, 본 논문에서 제안하는 심층 신경망 모델의 성능과 효과를 확인할 수 있었다.

Target Detection Method using Lightweight Mean Shift Segmentation and Shape Features (경량화된 Mean-Shift 영상 분할 및 형태 특징을 이용한 객체 탐지 방법)

  • Kim, Jeong-Seok;Kim, Dae-Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.41-44
    • /
    • 2022
  • Mean-Shift 영상 분할은 객체 검출을 위한 영상 전처리 방법으로써, 영상 처리 및 패턴 인식 분야에서 널리 사용되는 방법이다. 영상 분할은 영역 기반과 에지 기반 방식으로 나누어지며 대표적으로 FCM, Quickshift, Felzenszwalb, SLIC 알고리즘 등 이 있다. 언급한 영상 분할 방법들은 Mean-Shift 영상 분할에 비해서 빠른 속도로 실행시킬 수 있지만, 형태적 특징이 훼손되고 하나의 객체가 여러 세그멘테이션으로 분할된다는 단점을 가지고 있다. 본 논문에서는 소형 객체를 탐지하기 위한 고속화된 Mean-Shift 영상 분할과 객체의 형태적 특징을 이용하여 객체를 탐지하는 방법을 제안한다. 하드웨어 리소스가 제한된 신호처리기에 제안하는 알고리즘을 수행하기 위하여 Mean-Shift 영상 분할에서 필터링 과정을 고속화 하였고, 적외선 영상 내 영상 전처리 수행을 통해 잡음 제거 후 Mean-Shift 영상 분할 방법을 수행함으로써, 객체의 형태적 특징을 잘 살려서 영상 분할을 할 수 있도록 하였다. 또한 각 세그멘테이션의 크기, 너비, 높이, 밝기 정보와 형태적 특징점을 이용한 객체 탐지 방법을 제안한다.

  • PDF

정책기반의 새로운 공격 탐지 방법

  • 김형훈
    • Review of KIISC
    • /
    • v.13 no.1
    • /
    • pp.64-67
    • /
    • 2003
  • 컴퓨팅 환경이 보다 신뢰성 있고 실질적으로 사용되기 위해서는 보안이 필수적인 기능으로 요구된다. 알려진 공격의 패턴을 이용한 침입탐지는 공격자의 여러 가지 변형된 방법이나 새로운 공격 방법에 의해 쉽게 공격당할 수 있다. 또한 각각의 보안정책을 교묘히 회피하는 많은 공격 방법들이 수시로 개발되어 시도되고 있다. 따라서 침입에 성공하는 많은 공격들은 기존의 공격 패턴과 보안정책 사이의 허점을 이용하여 발생된다고 볼 수 있다. 본 논문에서 제안된 방법은 새로운 공격을 탐지하기 위해 이를 탐지하기 위한 특징값을 규칙집합을 통해 획득한다. 규칙집합은 알려진 공격, 보안정책과 관리자의 경험적 지식에 대한 분석을 통해 공격의 특징을 감지할 수 있도록 작성된다. 이러한 규칙집합에 의해 획득된 특징값들은 훈련단계에서 Naive Bayes 분류기법을 통해 공격에 대한 통계적 특징값으로 사용한다. 제안된 방법은 훈련단계에서 얻어진 공격에 대한 통계적 특징값을 이용하여 변형된 공격이 나 새로운 공격을 탐지할 수 있다.

IoT Attack Detection Using PCA and Machine Learning (주성분 분석과 기계학습을 이용한 사물인터넷 공격 탐지)

  • Lee, Ji-Gu;Lee, Soo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.245-246
    • /
    • 2022
  • 최근 IoT 환경에서 기계학습을 이용한 공격 탐지 모델의 연구가 활발히 진행되고 있으며, 탐지 정확도도 점차 향상되고 있다. 하지만, IoT 환경의 특징인 저 사양 하드웨어, 고차원의 특징, 방대한 트래픽 등으로 인해 탐지성능이 저하되는 문제가 있다. 따라서 본 논문에서는 MQTT(Message Queuing Telementry Transport) 프로토콜 기반의 IoT 환경에서 수집된 데이터셋을 대상으로 주성분 분석(Principal Component Analysis)과 LightGBM을 이용하여 데이터셋 차원을 감소시키고, 공격 클래스를 분류하였다. 실험결과 원본 데이터셋 차원을 주성분 3개(약 9%)로 감소시켰음에도 모든 특징(33개)을 사용한 실험결과와 거의 유사한 성능을 보였다. 또한 기존 연구의 특징 선택을 통한 탐지 모델과 비교하였을 때도 분류성능이 더 우수한 것으로 나타났다.

  • PDF

A new feature ranking and feature selection framework for realtime IDS (실시간 침입탐지 시스템을 위한 새로운 특징랭킹과 특징선택 프레임워크에 대한 연구)

  • Lee, Sang-Jae;Kim, Se-Heon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.514-518
    • /
    • 2008
  • 인터넷의 보급에 따라 네트워크를 통한 공격에 피해가 급증하고 있다. 이러한 네트워크 침해를 막기위해 여러 연구자들은 침입탐지 시스템(IDS)을 제안하였으나, 시스템의 탐지율에만 초점을 맞추고 있기 때문에 실시간(Realtime)으로 동작하지 못하고 있다. 실시간 IDS를 위하여 최근 다양한 특징선택(Feature selection)들이 제안되고 있다. 본1) 논문에서는 특징들을 중요도의 순위를 정하는 새로운 랭킹 방법과 이 방법에 따라서 특징을 선택하는 특징 선택 알고리즘을 제안한다. 또한 제안된 알고리즘을 통하여 선택된 특징을 사용할 경우 탐지결과가 우수함을 실험으로 보여주고 있다.

  • PDF

Research on Normalizing Flow-Based Time Series Anomaly Detection System (정규화 흐름 기반 시계열 이상 탐지 시스템 연구)

  • Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.283-285
    • /
    • 2023
  • 이상 탐지는 데이터에서 일반적인 범주에서 크게 벗어나는 인스턴스 또는 패턴을 식별하는 중요한 작업이다. 본 연구에서는 시계열 데이터의 특징 추출을 위한 비지도 학습 기반 방법과 정규화 흐름의 결합을 통한 이상 탐지 프레임워크를 제안한다. 특징 추출기는 1차원 합성곱 신경망 기반의 오토인코더로 구성되며, 정상적인 시퀀스로만 구성된 훈련 데이터를 압축하고 복원하는 과정을 통해 최적화된다. 추출된 시계열 데이터의 특징 맵은 가능도를 최대화하도록 훈련된 정규화 흐름의 입력으로 사용된다. 이와 같은 방식으로 훈련된 이상 탐지 시스템은 테스트 샘플에 대한 이상치를 계산하며, 최종적으로 임계값과의 비교를 통해 이상 여부를 예측한다. 성능 평가를 위해 시계열 이상 탐지를 위한 공개 데이터셋을 이용하여 공정하게 이상 탐지 성능을 비교하였으며, 실험 결과는 제안하는 정규화 흐름 기법이 시계열 이상 탐지 시스템에 활용될수 있는 잠재성을 시사한다.

  • PDF

Detection of an Open-Source Software Module based on Function-level Features (함수 수준 특징정보 기반의 오픈소스 소프트웨어 모듈 탐지)

  • Kim, Dongjin;Cho, Seong-je
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.713-722
    • /
    • 2015
  • As open-source software (OSS) becomes more widely used, many users breach the terms in the license agreement of OSS, or reuse a vulnerable OSS module. Therefore, a technique needs to be developed for investigating if a binary program includes an OSS module. In this paper, we propose an efficient technique to detect a particular OSS module in an executable program using its function-level features. The conventional methods are inappropriate for determining whether a module is contained in a specific program because they usually measure the similarity between whole programs. Our technique determines whether an executable program contains a certain OSS module by extracting features such as its function-level instructions, control flow graph, and the structural attributes of a function from both the program and the module, and comparing the similarity of features. In order to demonstrate the efficiency of the proposed technique, we evaluate it in terms of the size of features, detection accuracy, execution overhead, and resilience to compiler optimizations.