본 논문은 잡음 환경하에서 특징 벡터의 차원 축소를 통한 음성 구간 검출에 관한 연구이다. 음성/비음성 분류는 통계적 모델을 이용한 분류-기반 방법을 사용한다. 검출기에서 실시간 적응화를 위해 우도-기반의 특징 벡터에 대한 차원 축소 방법을 제안한다. 이 방법은 음성/비음성 클래스에 대한 가우시안 확률 밀도 함수에 의한 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성/비음성 결정은 우도비 검증(Likelihood Ratio Test)의 방법을 이용하며, LDA(Linear Discriminant Analys)에 의한 축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법을 통하여 2차원으로 축소된 특징 벡터가 고차원에서의 결과와 대등함을 확인하였다.
얼굴 데이터를 사용하는 인식 시스템에서 특징 벡터의 차원은 일반적으로 매우 크다. 패턴인식에서 차원 축소는 중요한 문제로서, 효과적인 얼굴 인식을 위한 특징 벡터의 차원 축소는 필수적이라 할 수 있다. 본 논문에서는 획득된 얼굴 데이터로부터 저 차원의 강건한 특징을 얻기 위하여 웨이블릿을 사용하고, 식별력 있는 특징을 얻기 위하여 direct linear discriminant analysis를 사용하였다. Direct linear discriminant analysis 방법을 사용하기 이전에 웨이블릿을 사용함으로써 계산 복잡도를 줄여줄 뿐만 아니라 식별력을 높여주고 효과적으로 얼굴 데이터의 차원을 축소할 수 있음을 보여 준다. 얼굴의 패턴정합을 위해서는 최근접 평균 분류기(Nearest Mean Classifier)를 사용하였으며, 최근접 평균 분류기를 사용함으로써 분류를 위한 시간을 최소화하였다. 본 논문에서 인간의 얼굴인식을 위해 제시한 방법이 얼굴패턴을 표현하는 효과적인 방법이며, 시간 및 공간의 절약이라는 측면에서 유리하다는 것을 보여준다.
본 논문은 잡음 환경하에서 적응 가능한 음성구간검출를 구축하기 위하여 우도기반의 음성 특징 파라미터의 비선형 차원축소 방법을 제안한다. 제안하는 차원축소 방법은 음성/비음성 클래스에 대한 가우시아 확률 밀도 함수의 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성구간검출기의 음성/비음성 결정은 우도비 검증(LRT)의 통계적 방법을 이용하며, 선형판별분석(LDA)에 의한 차원축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법으로 음성 특징 파라미터를 2차원으로 축소한 결과가 원래 특징백터의 차원에서의 결과와 대등한 성능을 확인하였다.
색상 히스토그램은 영상의 색상 특징을 표현하기 위한 특징 벡터로 빈번히 사용되지만, 고차원의 특징 벡터를 생성하므로 효율성의 면에서 한계점을 갖고 있다. 본 논문에서는 주어진 차량 영상의 색상 히스토그램에 PCA (principal components analysis) 기법을 적용하여 특징 벡터의 차원을 축소시키는 방법을 제안한다. 차원이 축소된 특징 벡터들에 대해서는 SVM (support vector machine) 기법을 적용하여 차량 색상을 인식하기 위해 사용한다. 특징 벡터의 차원을 1/32로 축소한 결과, 차원이 축소되기 이전의 특징 벡터와 비교하여 약 1.42%의 미소한 차이로 색상 인식 성공률이 감소하였다. 또한, 색상 인식의 수행 시간은 1/31로 단축됨으로써 효율적으로 색상 인식을 수행할 수 있었다.
얼굴 이미지의 대부분은 표본의 수보다 특징 변수의 수가 많기 때문에 이러한 점을 고려한 특징 추출 방법이 필요하다. 본 논문에서는 부분 최소제곱법을 이용하여 특징 벡터의 차원을 축소하는 방법을 제안한다. 전통적인 차원 축소 방법인 주성분 분석은 클래스의 정보를 고려하지 않고 최대 변이를 가지는 성분을 추출하기 때문에, 클래스의 구분에 필요한 특징을 필수적으로 추출하지 못한다. 이에 비해, 부분 최소제곱법은 클래스 변수에 대한 정보를 포함하여 성분을 추출한다. 그러므로, 분류를 하는데 있어서는 주성분 분석에 의해 추출된 성분보다는 부분 최소제곱법에 의해 추출된 성분이 보다 더 예측적이다. 맨체스터와 ORL 얼굴 데이터베이스를 이용하여 실험한 결과, 분류와 차원 축소 측면에서 주성분 분석 방법보다는 부분 최소제곱법을 이용한 방법이 그 성능이 우수함을 알 수 있었다.
문서분류의 문제점 중의 하나는 사용하는 데이터의 차원이 매우 크다는 것이다. 그러므로 문서에서 필요한 단어만을 자동적으로 추출하여 문서데이터의 차원을 축소하는 작업이 문서분류에서는 필수적이다. DF(Document Frequency)는 문서의 차원축소의 대표적인 통계적 방법 중 하나인데, 본 논문에서는 문서의 차원축소에 DF와 주성분 분석(PCA)을 비교하여 주성분 분석이 문서의 차원축소에 적합함을 실험적으로 보인다. 그리고 비선형 주성분 분석(nonlinear PCA) 방법 중 locally linear PCA와 kenel PCA를 적용하여 비선형 주성분 분석을 이용하여 문서의 차원을 줄이는 것이 선형 주성분 분석을 이용하는 것 보다 문서분류에 더 적합함을 실험적으로 보인다.
초분광영상은 사람이 볼 있는 가시광선 영역부터 자외선 파장 대역까지 수십에서 수천 개의 데이터를 가지고 있는 고차원 데이터이다. 그렇기 때문에 초분광영상을 이용한 연구에는 많은 저장 공간과 고사양의 성능을 필요로 한다. 따라서 초분광영상의 차원을 감소시켜 데이터용량을 줄이고, 처리속도를 향상시키기 위한 연구들이 이루어지고 있다. 기존에 자주 사용되던 방법인 PCA와 ICA는 차원축소를 위하여 고유벡터를 계산하고 이를 이용하여 축을 변경하여 차원축소를 한다. 하지만 초분광영상에서는 이러한 방법으로 차원을 축소할 시 정확도가 감소한다. 따라서 본 논문에서는 특징 밴드를 추출하고 이를 이용하여 차원축소를 하는 SPVD 알고리즘을 제안한다. SPVD(Spectral pair vector decomposition) 알고리즘은 d개의 그룹으로 나누고 각 그룹들의 양벡터 각과 음벡터 각을 계산한 후 이를 이용하여 차원축소를 한다. 실험 결과 PCA는 61차원에서 70.05%, ICA는 71차원에서 63.03% 정확도를 보이는데 비해 SPVD 알고리즘은 3차원에서 83% 정확도를 보였다.
사용자 포즈의 3차원 데이터 생성을 통한 3차원 포즈 인식은 2차원 포즈 인식의 문제점을 해결하기 위해서 많이 연구되고 있지만, 3차원 표면 데이터의 방대한 양으로 포즈 인식에서 중요한 특징 추출(feature extraction)이 어렵고 수행 시간이 많이 걸리는 문제점을 가지고 있다. 본 논문에서는 3차원 포즈 인식의 두 가지 문제점인 특징 추출의 어려움과 느린 처리속도를 개선하기 위해서 3차원 형상복원 기술로 모델의 3차원 표면 점들로 구성된 데이터를 2차원 데이터로 변환하는 차원 축소(dimension reduction) 방법을 제안한다. 실린더형 외곽점을 이용한 메쉬없는 매개변수화(meshless parameterization) 방법은 방대한 데이터인 3차원 포즈 데이터를 2차원 데이터로 변환하여 특징 추출과 매칭과정의 연산 속도를 향상 시키며, 특징 추출의 효율성 검증을 위해 간단한 환경에서 실험이 가능한 손 포즈 인식 및 인간 포즈 인식에 적용하였다.
본 논문에서는 개인화된 분위기 분류 모델 대신에 대중의 분위기 분류 모델을 제안한다. 분위기 판별 성능을 개선하기 위해 두 가지 접근 방법을 선택하였는데, 그 첫 번째가 표준편차에 기초한 특징축소이다. 이는 음악의 특징을 추출하기 위해 사용하는 MIRtoolbox에서 추출되는 391개의 특징들을 모두 사용할 경우의 성능 저하 문제를 해결하기 위한 방법이다. 실험결과, 본 논문에서 제안한 특징축소 방법이 기존의 차원 축소 방법인 R-Square와 PCA보다 성능이 좋음을 확인할 수 있었다. 그리고 특징축소 방법만으로는 성능 개선에 한계가 있어 두 번째 개선방법으로 단위 신경망을 사용하여 추가의 성능 개선을 시도하였다. 실험결과 이 역시 유효한 성능 개선이 이루어짐을 확인할 수 있었다.
데이터의 차원축소는 요소들의 공통성을 파악해 영향력 있는 중요한 특징 요소를 추출하여 간소화함으로써 복잡함을 줄이고 다중 공선성 문제를 해결한다. 그리고 중복 및 노이즈 검출을 함으로써 불필요함을 줄인다. 이에 본 논문에서는 PCA(Prinicipal Component Analysis)을 적용한 결함 심각도 기반 차원 축소 모델을 제안한다. 제안된 모델은 결함 심각도가 있는 NASA 데이터 세트인 PC4에 적용하여 결함 심각도에 영향을 주는 속성의 차원수를 검증한다. 그 다음 데이터의 차원을 축소한 후 비교 분석한다. 실험결과, PC4의 적합한 차원수는 2~3개였고 그룹화를 통해 차원 축소가 가능한 것을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.