• Title/Summary/Keyword: 특징 중요도

Search Result 4,483, Processing Time 0.03 seconds

The Technology of the Audio Feature Extraction for Classifying Contents (콘덴츠 분류를 위한 오디오 신호 특징 추출 기술)

  • Lim, J.D.;Han, S.W.;Choi, B.C.;Chung, B.H.
    • Electronics and Telecommunications Trends
    • /
    • v.24 no.6
    • /
    • pp.121-132
    • /
    • 2009
  • 음성을 비롯하여 음악, 음향 등을 포함하는 오디오 신호는 멀티미디어 콘텐츠를 구성하는 매우 중요한 미디어 타입이며, 미디어 기록 매체와 네트워크의 발전으로 인한 데이터 양의 급격한 증대는 수동적 관리의 어려움을 유발하게 되고, 이로 인해 오디오 신호를 자동으로 구분하는 기술은 매우 중요한 기술로 인식되고 있다. 다양한 오디오 신호를 분류하기 위한 오디오 신호의 특징을 추출하는 기술은 많은 연구들을 통해 발전하여 왔으며, 본 논문은 오디오 콘텐츠 자동 분류에서 높은 성능을 갖는 오디오 신호 특징 추출에 대해서 분석한다. 그리고 특징 분류기 중에서 안정적인 성능을 가지는 SVM을 사용한 오디오 신호 분류 방법을 알아본다.

A Replay Shot Detection Algorithm for the Soccer Video Abstraction (축구 동영상 요약을 위한 재연 장면 자동 추출 알고리즘)

  • 정진국;김주영;낭종호;김경수;하명환;정병희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.277-279
    • /
    • 2001
  • 최근 디지털 비디오 데이터의 사용이 급격히 증가하면서 저급 수준의 정보를 이용하여 고급 수준의 내용 정보를 자동으로 추출하는 기술이 필요하게 되었다. 축구와 같은 분야에서는 그 중에서도 골, 프리킥, 파울 장면 등의 고급 수준 내용 정보가 중요한 의미를 갖게 되는데 특히, 이러한 장면 중 중요하다고 여기는 장면은 재연 장면을 통하여 다시 시청자에게 보여주게 되며, 축구 비디오에 대한 요약에서는 이런 장면들이 꼭 포함되어야 한다. 본 논문에서는 이러한 축구 비디오 데이터에서 재연 장면을 자동으로 추출하는 방법을 제안한다. 기본적으로는 축구 고유의 특징들을 이용하는데 첫 번째 특징은 샷의 길이가 너무 짧거나 너무 길지 않다는 것이고, 두 번째 특징은 재연 장면이라는 것은 장면이 느리게 다시 재생되는 것이기 때문에 움직임 특징이 일반적인 장면과는 다르다는 것이다. 본 논문에서는 오브젝트의 움직임을 구분하기 위하여 재연 장면을 두 가지 종류로 나누었다. 하나는 확대 상태의 재연 장면이고 다른 하나는 축소 상태의 재연 장면이다. 본 논문의 알고리즘을 적용하여 실험한 결과 Recall과 precision 모두 77% 이상 나오는 것을 알 수 있었다.

  • PDF

Study on Performance Analysis of Video Retrieval Using Temporal Texture (Temporal texture를 이용한 비디오 검색의 성능분석)

  • 홍지수;김영복;김도년;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.443-445
    • /
    • 2000
  • 모든 물체의 표면은 독특한 성질을 보유하고 있으므로, 비디오 검색에 있어 텍스처는 형상이나 색과 더불어 중요한 변수로 사용될 수 있다. 비디오 검색에 있어서 중요한 것은 어떤 영상의 특징을 올바르게 추출하고 잘 분류하여 표현하는 것이다. Temporal texture는 무한한 시공간적 범위의 복잡하고, 추상적인 움직임 패턴도 특징화시킬 수 있으므로, temporal texture 패턴을 얼마나 잘 이용할 수 있느냐는 비디오 검색의 성능에 많은 영향을 끼칠 수 있다. 본 논문은 temporal texture의 서로 다른 특징을 가진 세 가지의 모델을 선정하여 비교한다. 특히, 특징 추출의 분류가 정확하게 이루어지느냐에 초점을 맞추어서 분석하였다. 분류의 성능은 두 가지 변수 즉, 어떤 성질의 모델이며 비디오 데이터인가에 따라 달라지게 된다. 이들 모델링이 분류하기까지 걸리는 시간의 차이는 무시할 수 있을 정도의 시간차이므로 정확도를 위주로 성능을 분석했다.

  • PDF

Selecting Minimized Input Features for Detecting Automatic Fall Detection Based on NEWFM (낙상 검출을 위한 NEWFM 기반의 최소의 특징입력 선택)

  • Shin, Dong-Kun;Lee, Sang-Hong;Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.17-25
    • /
    • 2009
  • This paper presents a methodology for a fall detection using the feature extraction method based on the neural network with weighted fuzzy membership functions (NEWFM). The distributed non-overlap area measurement method selects the minimized number of input features by removing the worst input features one by one. Nineteen number of wavelet transformed coefficients captured by a triaxial accelerometer are selected as minimized features using the non-overlap area distribution measurement method. The proposed methodology shows that sensitivity, specificity, and accuracy are 95%, 97.25%, and 96.125%, respectively.

  • PDF

Rough Entropy-based Knowledge Reduction using Rough Set Theory (러프집합 이론을 이용한 러프 엔트로피 기반 지식감축)

  • Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.223-229
    • /
    • 2014
  • In an attempt to retrieve useful information for an efficient decision in the large knowledge system, it is generally necessary and important for a refined feature selection. Rough set has difficulty in generating optimal reducts and classifying boundary objects. In this paper, we propose quick reduction algorithm generating optimal features by rough entropy analysis for condition and decision attributes to improve these restrictions. We define a new conditional information entropy for efficient feature extraction and describe procedure of feature selection to classify the significance of features. Through the simulation of 5 datasets from UCI storage, we compare our feature selection approach based on rough set theory with the other selection theories. As the result, our modeling method is more efficient than the previous theories in classification accuracy for feature selection.

Feature Extraction for Automatic Golf Swing Analysis by Image Processing (영상처리를 이용한 골프 스윙 자동 분석 특징의 추출)

  • Kim, Pyeoung-Kee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.53-58
    • /
    • 2006
  • In this paper, I propose an image based feature extraction method for an automatic golf swing analysis. While most swing analysis systems require an expert like teaching professional, the proposed method enables an automatic swing analysis without a professional. The extracted features for swing analysis include not only key frames such as addressing, backward swing, top, forward swing, impact, and follow-through swing but also important positions of golfer's body parts such as hands, shoulders, club head, feet, knee. To see the effectiveness of the proposed method. I tested it for several swing pictures. Experimental results show that the proposed method is effective for extracting important swing features. Further research is under going to develop an automatic swing analysis system using the proposed features.

  • PDF

An Efficient Algorithm of Face Recognition Using Facial Feature Vectors (얼굴 특징 벡터를 이용한 효율적인 얼굴 인식 알고리즘)

  • 전승철;박성한
    • Journal of Broadcast Engineering
    • /
    • v.3 no.2
    • /
    • pp.164-171
    • /
    • 1998
  • 사람의 얼굴은 일반 객체와는 다르게 정확히 구별되는 특징이 없다. 따라서 일반적으로 사람 얼굴에 관한 연구에서는 인간이 사람의 얼굴을 볼 대 가장 먼저 인식을 하는 눈, 코, 입을 특징으로 정하고 있다. 이러한 특징은 사람에 따라 다르게 나타나며 주위환경에 영향을 받는다. 따라서 이러한 사람의 특징을 정확히 찾아내는 것이 중요하다. 본 논문에서는 얼굴 특징점의 기하학적 성질을 이용하여 눈, 코, 입의 특징점을 효율적으로 찾아내는 알고리즘을 제안하고 있다. 이러한 특징점을 이용해서 얼굴 특징점 벡터와 얼굴 특징점 영상을 얻어낸다. 이 후 임의 입력 사람 얼굴에 대해서 얼굴 특징점 벡터의 유클리디안 거리와 밀 기록된 특징점 영상과의 상관관계를 이용해 유사도를 계산해서 얼굴을 인식한다. 제안하는 방법은 기존의 방법보다 계산 복잡도가 적으며 또한 정확한 인식을 얻는다.

  • PDF

Enhanced Postprocessing Algorithm for Minutia Extraction Using Various Information in Fingerprint (다양한 지문정보를 이용한 개선된 특징점 추출 후처리 알고리즘)

  • 박태근;정선경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.359-367
    • /
    • 2004
  • The postprocessing to remove false minutia is important because the extraction of true minutia affects the performance as a key factor in fingerprint identification system. In this paper, we propose an efficient postprocessing algorithm for removing false minutia among the extracted candidates in a thinned image. The proposed algorithm removes false minutia in three steps by using various information in the acquired fingerprint image: the structural information of minutia (end point and bifurcation), the inherent characteristics of fingerprint, and the quality of acquired images. Under Intel Celeron processor environment with 248${\times}$292 images acquired by optic device, the experiments showed that the proposed algorithm efficiently removed false minutia while preserving true minutia. Moreover, the proposed algorithm takes 0.0154 second, which is very small compared to the time for preprocessing (0.343 second).

Electrophysiological Features of Diabetic Polyneuropathy: Motor Nerve Conduction Studies (당뇨병성다발신경병증의 전기생리학적 특징: 운동신경전도검사)

  • Kang, Ji-Hyuk;Lee, Yun-Seob
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.237-245
    • /
    • 2010
  • Nerve conduction studies (NCS) are the most objective measure of nerve function and essential for the diagnosis of sub-clinical neuropathy in diabetes mellitus and diabetic polyneuropathy (DPN). This study evaluates the characteristic of electrophysiological abnormalities in DPN. Electrodiagnostic data from 120 patients with diabetic polyneuropathies and 77 control subjects were reviewed. Motor nerve conduction velocities (MNCV), distal motor latencies (DML), compound muscle action potential (CMAP) amplitudes, No potential frequency and conduction block were analyzed. Data were normalized based on normative reference values, and the proportion of nerves with abnormal values in the lower and upper limbs were evaluated. DPN was systemic demyelinating peripheral polyneuropathy and more severe abnormal nerve conduction was found in lower limbs than in upper limbs. The abnormal degree was more severe in peroneal nerve. It was no statistically significant difference of conduction block in control and DPN group. Our findings suggest that DPN had more common and severe peroneal nerve involvement in the motor nerve conduction studies (MNCS). These findings have important implications for the electrophysiological evaluation of DPN.

ECG Signal Compression using Feature Points based on Curvature (곡률을 이용한 특징점 기반 심전도 신호 압축)

  • Kim, Tae-Hun;Kim, Sung-Wan;Ryu, Chun-Ha;Yun, Byoung-Ju;Kim, Jeong-Hong;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.624-630
    • /
    • 2010
  • As electrocardiogram(ECG) signals are generally sampled with a frequency of over 200Hz, a method to compress diagnostic information without losing data is required to store and transmit them efficiently. In this paper, an ECG signal compression method, which uses feature points based on curvature, is proposed. The feature points of P, Q, R, S, T waves, which are critical components of the ECG signal, have large curvature values compared to other vertexes. Thus, these vertexes are extracted with the proposed method, which uses local extremum of curvatures. Furthermore, in order to minimize reconstruction errors of the ECG signal, extra vertexes are added according to the iterative vertex selection method. Through the experimental results on the ECG signals from MIT-BIH Arrhythmia database, it is concluded that the vertexes selected by the proposed method preserve all feature points of the ECG signals. In addition, they are more efficient than the AZTEC(Amplitude Zone Time Epoch Coding) method.