• Title/Summary/Keyword: 특징 분류

Search Result 4,474, Processing Time 0.037 seconds

Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier (Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색)

  • Son, Jung Eun;Ko, Byoung Chul;Nam, Jae Yeal
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.273-280
    • /
    • 2013
  • This paper presents novel OCS-LBP (Oriented Center Symmetric Local Binary Patterns) based on orientation of pixel gradient and image retrieval system based on BoF (Bag-of-Feature) and random forest classifier. Feature vectors extracted from training data are clustered into code book and each feature is transformed new BoF feature using code book. BoF features are applied to random forest for training and random forest having N classes is constructed by combining several decision trees. For testing, the same OCS-LBP feature is extracted from a query image and BoF is applied to trained random forest classifier. In contrast to conventional retrieval system, query image selects similar K-nearest neighbor (K-NN) classes after random forest is performed. Then, Top K similar images are retrieved from database images that are only labeled K-NN classes. Compared with other retrieval algorithms, the proposed method shows both fast processing time and improved retrieval performance.

A Study on the Signal Processing for Content-Based Audio Genre Classification (내용기반 오디오 장르 분류를 위한 신호 처리 연구)

  • 윤원중;이강규;박규식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.271-278
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.

A Comparison of Speech/Music Discrimination Features for Audio Indexing (오디오 인덱싱을 위한 음성/음악 분류 특징 비교)

  • 이경록;서봉수;김진영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.10-15
    • /
    • 2001
  • In this paper, we describe the comparison between the combination of features using a speech and music discrimination, which is classifying between speech and music on audio signals. Audio signals are classified into 3classes (speech, music, speech and music) and 2classes (speech, music). Experiments carried out on three types of feature, Mel-cepstrum, energy, zero-crossings, and try to find a best combination between features to speech and music discrimination. We using a Gaussian Mixture Model (GMM) for discrimination algorithm and combine different features into a single vector prior to modeling the data with a GMM. In 3classes, the best result is achieved using Mel-cepstrum, energy and zero-crossings in a single feature vector (speech: 95.1%, music: 61.9%, speech & music: 55.5%). In 2classes, the best result is achieved using Mel-cepstrum, energy and Mel-cepstrum, energy, zero-crossings in a single feature vector (speech: 98.9%, music: 100%).

  • PDF

Ensemble Classifier with Negatively Correlated Features for Cancer Classification (암 분류를 위한 음의 상관관계 특징을 이용한 앙상블 분류기)

  • 원홍희;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1124-1134
    • /
    • 2003
  • The development of microarray technology has supplied a large volume of data to many fields. In particular, it has been applied to prediction and diagnosis of cancer, so that it expectedly helps us to exactly predict and diagnose cancer. It is essential to efficiently analyze DNA microarray data because the amount of DNA microarray data is usually very large. Since accurate classification of cancer is very important issue for treatment of cancer, it is desirable to make a decision by combining the results of various expert classifiers rather than by depending on the result of only one classifier. Generally combining classifiers gives high performance and high confidence. In spite of many advantages of ensemble classifiers, ensemble with mutually error-correlated classifiers has a limit in the performance. In this paper, we propose the ensemble of neural network classifiers learned from negatively correlated features using three benchmark datasets to precisely classify cancer, and systematically evaluate the performances of the proposed method. Experimental results show that the ensemble classifier with negatively correlated features produces the best recognition rate on the three benchmark datasets.

PCA-based Feature Extraction using Class Information (클래스 정보를 이용한 PCA 기반의 특징 추출)

  • Park Myoung Soo;Na Jin Hee;Choi Jin Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.428-432
    • /
    • 2005
  • 영상 데이터와 같은 대용량의 데이터를 분류하고자 할 경우, 입력 데이터의 차원을 줄여서 특징 벡터를 뽑아내는 전처리 과정은 필수적이다. 이 경우 특징 벡터가 입력 데이터의 정보를 최대한 포함하도록 하는 것이 중요하다. 특징 벡터를 뽑는 대표적인 방법으로는 PCA, ICA, LDA, MLP와 같은 특징 추출(feature extraction) 방법을 들 수 있다. PCA와 LDA는 무감독 학습 방식이고, LDA, MLP는 감독 학습 방식에 해당한다. 감독학습 방식의 경우 입력 정보와 함께 클래스 정보를 사용하기 때문에 데이터를 분류하기에 더 좋은 특징들을 뽑아낼 수 있는 장점이 있다. 본 논문에서는 무감독 학습 방식인 PCA에 클래스에 대한 정보를 함께 사용하여 특징을 추출함으로써 데이터 분류에 더욱 적합한 특징들을 뽑는 방법을 제안하였다. 그리고, Yale face database를 사용하여 제안한 알고리즘의 성능을 기존의 알고리즘과 비교, 테스트하였다.

  • PDF

An Efficient Selection Method for Document Classification Based On Singular Value Decompostion (문서분류에서 SVD(Singular Value Decompotion)기법에 기초한 효율적인 특징 선택방법 연구)

  • Li, Cheng-hua;Byun, Dong Ryul;Park, Soon Cheol
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.321-322
    • /
    • 2009
  • 본 논문에서는 문서분류를 위하여 SVD(Singular Value Decomposition)을 이용한 효율적인 특징 선택 방법을 제안한다. 분류기 알고리즘은 문서를 효과적으로 분류할 수 있지만 분류기에 입력되는 특징공간이 너무 크다는 단점이 있다. SVD를 이용하면 입력 데이터의 차원을 줄여줄 수 있으며 문서와 문서 사이의 관계성을 내포하는 벡터공간을 만들 수 있다. 따라서 SVD를 이용하면 문서분류의 시간과 효율을 동시에 증가시킬 수 있다. 본 논문에서는 실험을 통하여 SVD을 이용한 문서분류 시스템이 입력데이터에 대한 차원을 감소시키면서 훌륭한 분류 결과를 얻을 수 있음을 보여준다.

Applying Speciated GA to Huge-scale Feature Selection in Bioinformatics (생명정보학에서의 거대규모 특징추출을 위한 종분화 GA의 활용)

  • 황금성;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.229-231
    • /
    • 2002
  • 최근 생물 유전자 정보에 대한 관심이 커지면서 이를 위한 효과적인 분석 방법이 요구되고 있다. 특히, 분류기의 데이터로 사용하기 위해서 필요한 특징만을 뽑는 과정인 특징 추출은 대량의 유전자 정보에서 의미 있는 정보를 선별하는 중요한 과정이다. 그러나 유전자 정보는 사용되는 데이터의 특징규모가 매우 크기 때문에 일반적인 데이터 마이닝 기법으로는 분석이 힘들다. 본 논문에서는 효율적인 거대규모 특징 추출을 위해 유전자 알고리즘(GA)파 신경망을 사용한 특징추출 방법을 소개하고, 종분화 기법을 사용한 효과적인 특징추출 방법을 제시한다. 그리고, CAMDA 2000에 공개된 암 DNA Microarray로 안종류를 분류하는 문제에 대하여 성능을 평가하였다.

  • PDF

A Priori and the Local Font Classification (연역적이고 국부적인 영문자의 폰트 분류법)

  • 정민철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • 본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어에서 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 Ascender, Descender와 Serif가 사용된다. 입력 단어로부터 Ascender, Descender와 Serif가 추출되어 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 폰트 그룹, 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다 나아가, 특정 폰트에 따른 Mono-font 문자 분할기와 Mono-Font 문자 인식기로 구성되는 OCR 시스템을 구성할 수 있는 것을 가능하게 한다.

Block Classification of Document Images Using the Spatial Gray Level Dependence Matrix (SGLDM을 이용한 문서영상의 블록 분류)

  • Kim Joong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1347-1359
    • /
    • 2005
  • We propose an efficient block classification of the document images using the second-order statistical texture features computed from spatial gray level dependence matrix (SGLDM). We studied on the techniques that will improve the block speed of the segmentation and feature extraction speed and the accuracy of the detailed classification. In order to speedup the block segmentation, we binarize the gray level image and then segmented by applying smoothing method instead of using texture features of gray level images. We extracted seven texture features from the SGLDM of the gray image blocks and we applied these normalized features to the BP (backpropagation) neural network, and classified the segmented blocks into the six detailed block categories of small font, medium font, large font, graphic, table, and photo blocks. Unlike the conventional texture classification of the gray level image in aerial terrain photos, we improve the classification speed by a single application of the texture discrimination mask, the size of which Is the same as that of each block already segmented in obtaining the SGLDM.

  • PDF

Feature extraction based on DWT and GA for Gesture Recognition of EPIC Sensor Signals (EPIC 센서 신호의 제스처 인식을 위한 이산 웨이블릿 변환과 유전자 알고리즘 기반 특징 추출)

  • Ji, Sang-Hun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Young-Chul
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.612-615
    • /
    • 2016
  • 본 논문에서는 EPIC(Electric Potential Integrated Circuit) 센서를 통해 추출된 동작신호에 대해 이산 웨이블릿 변환(Discrete Wavelet Transform : DWT)과 선형 판별분석(Linear Discriminant Analysis : LDA), Support Vector Machine(SVM)을 사용하는 동작 분류 시스템을 제안한다. EPIC 센서 신호에 대해 이산 웨이블릿 변환을 사용하여 웨이블릿 계수인 근사계수(approximation coefficients)와 상세계수(detail coefficients)를 구한 후, 각각의 웨이블릿 계수에 대해 특징 파라미터를 추출한다. 이 때, 특징 파라미터는 14개의 통계적 특징 추출 파라미터 중에 유전자 알고리즘(Genetic Algorithm : GA)을 통하여 선택한 우수한 특징 파라미터이다. 웨이블릿 계수들에서 추출한 특징 파라미터는 선형 판별분석을 적용하여 차원을 축소하고 SVM의 훈련 및 분류에 사용한다. 실험결과, 4가지 동작에 대한 EPIC 센서 신호분류에서 제안된 방법의 분류율이 99.75%로 원신호에 대한 HMM 분류율 97% 보다 높은 정확률을 보여주었다.