• Title/Summary/Keyword: 특징 보상

Search Result 264, Processing Time 0.02 seconds

Luminance Compensation using Feature Points and Histogram for VR Video Sequence (특징점과 히스토그램을 이용한 360 VR 영상용 밝기 보상 기법)

  • Lee, Geon-Won;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.808-816
    • /
    • 2017
  • 360 VR video systems has become important to provide immersive effect for viewers. The system consists of stitching, projection, compression, inverse projection, viewport extraction. In this paper, an efficient luminance compensation technique for 360 VR video sequences, where feature extraction and histogram equalization algorithms are utilized. The proposed luminance compensation algorithm enhance the performance of stitching in 360 VR system. The simulation results showed that the proposed technique is useful to increase the quality of the displayed image.

Speech enhancement method based on feature compensation gain for effective speech recognition in noisy environments (잡음 환경에 효과적인 음성인식을 위한 특징 보상 이득 기반의 음성 향상 기법)

  • Bae, Ara;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.51-55
    • /
    • 2019
  • This paper proposes a speech enhancement method utilizing the feature compensation gain for robust speech recognition performances in noisy environments. In this paper we propose a speech enhancement method utilizing the feature compensation gain which is obtained from the PCGMM (Parallel Combined Gaussian Mixture Model)-based feature compensation method employing variational model composition. The experimental results show that the proposed method significantly outperforms the conventional front-end algorithms and our previous research over various background noise types and SNR (Signal to Noise Ratio) conditions in mismatched ASR (Automatic Speech Recognition) system condition. The computation complexity is significantly reduced by employing the noise model selection technique with maintaining the speech recognition performance at a similar level.

Incorporation of IMM-based Feature Compensation and Uncertainty Decoding (IMM 기반 특징 보상 기법과 불확실성 디코딩의 결합)

  • Kang, Shin-Jae;Han, Chang-Woo;Kwon, Ki-Soo;Kim, Nam-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.492-496
    • /
    • 2012
  • This paper presents a decoding technique for speech recognition using uncertainty information from feature compensation method to improve the speech recognition performance in the low SNR condition. Traditional feature compensation algorithms have difficulty in estimating clean feature parameters in adverse environment. Those algorithms focus on the point estimation of desired features. The point estimation of feature compensation method degrades speech recognition performance when incorrectly estimated features enter into the decoder of speech recognition. In this paper, we apply the uncertainty information from well-known feature compensation method, such as IMM, to the recognition engine. Applied technique shows better performance in the Aurora-2 DB.

Speech Enhancement Based on Feature Compensation for Independently Applying to Different Types of Speech Recognition Systems (이기종 음성 인식 시스템에 독립적으로 적용 가능한 특징 보상 기반의 음성 향상 기법)

  • Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2367-2374
    • /
    • 2014
  • This paper proposes a speech enhancement method which can be independently applied to different types of speech recognition systems. Feature compensation methods are well known to be effective as a front-end algorithm for robust speech recognition in noisy environments. The feature types and speech model employed by the feature compensation methods should be matched with ones of the speech recognition system for their effectiveness. However, they cannot be successfully employed by the speech recognition with "unknown" specification, such as a commercialized speech recognition engine. In this paper, a speech enhancement method is proposed, which is based on the PCGMM-based feature compensation method. The experimental results show that the proposed method significantly outperforms the conventional front-end algorithms for unknown speech recognition over various background noise conditions.

Feature Compensation Method Based on Parallel Combined Mixture Model (병렬 결합된 혼합 모델 기반의 특징 보상 기술)

  • 김우일;이흥규;권오일;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.603-611
    • /
    • 2003
  • This paper proposes an effective feature compensation scheme based on speech model for achieving robust speech recognition. Conventional model-based method requires off-line training with noisy speech database and is not suitable for online adaptation. In the proposed scheme, we can relax the off-line training with noisy speech database by employing the parallel model combination technique for estimation of correction factors. Applying the model combination process over to the mixture model alone as opposed to entire HMM makes the online model combination possible. Exploiting the availability of noise model from off-line sources, we accomplish the online adaptation via MAP (Maximum A Posteriori) estimation. In addition, the online channel estimation procedure is induced within the proposed framework. For more efficient implementation, we propose a selective model combination which leads to reduction or the computational complexities. The representative experimental results indicate that the suggested algorithm is effective in realizing robust speech recognition under the combined adverse conditions of additive background noise and channel distortion.

Minimum Classification Error Training to Improve Discriminability of PCMM-Based Feature Compensation (PCMM 기반 특징 보상 기법에서 변별력 향상을 위한 Minimum Classification Error 훈련의 적용)

  • Kim Wooil;Ko Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.58-68
    • /
    • 2005
  • In this paper, we propose a scheme to improve discriminative property in the feature compensation method for robust speech recognition under noisy environments. The estimation of noisy speech model used in existing feature compensation methods do not guarantee the computation of posterior probabilities which discriminate reliably among the Gaussian components. Estimation of Posterior probabilities is a crucial step in determining the discriminative factor of the Gaussian models, which in turn determines the intelligibility of the restored speech signals. The proposed scheme employs minimum classification error (MCE) training for estimating the parameters of the noisy speech model. For applying the MCE training, we propose to identify and determine the 'competing components' that are expected to affect the discriminative ability. The proposed method is applied to feature compensation based on parallel combined mixture model (PCMM). The performance is examined over Aurora 2.0 database and over the speech recorded inside a car during real driving conditions. The experimental results show improved recognition performance in both simulated environments and real-life conditions. The result verifies the effectiveness of the proposed scheme for increasing the performance of robust speech recognition systems.

Study for Feature Selection Based on Multi-Agent Reinforcement Learning (다중 에이전트 강화학습 기반 특징 선택에 대한 연구)

  • Kim, Miin-Woo;Bae, Jin-Hee;Wang, Bo-Hyun;Lim, Joon-Shik
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.347-352
    • /
    • 2021
  • In this paper, we propose a method for finding feature subsets that are effective for classification in an input dataset by using a multi-agent reinforcement learning method. In the field of machine learning, it is crucial to find features suitable for classification. A dataset may have numerous features; while some features may be effective for classification or prediction, others may have little or rather negative effects on results. In machine learning problems, feature selection for increasing classification or prediction accuracy is a critical problem. To solve this problem, we proposed a feature selection method based on reinforced learning. Each feature has one agent, which determines whether the feature is selected. After obtaining corresponding rewards for each feature that is selected, but not by the agents, the Q-value of each agent is updated by comparing the rewards. The reward comparison of the two subsets helps agents determine whether their actions were right. These processes are performed as many times as the number of episodes, and finally, features are selected. As a result of applying this method to the Wisconsin Breast Cancer, Spambase, Musk, and Colon Cancer datasets, accuracy improvements of 0.0385, 0.0904, 0.1252 and 0.2055 were shown, respectively, and finally, classification accuracies of 0.9789, 0.9311, 0.9691 and 0.9474 were achieved, respectively. It was proved that our proposed method could properly select features that were effective for classification and increase classification accuracy.

A Study on Channel Compensation Algorithm for Robust Speaker Recognition (화자인식 성능 향상을 위한 채널 보상 알고리즘에 관한 연구)

  • Kim Jung Ho;Jung Hui Seok;Kang Chul Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.131-134
    • /
    • 2002
  • 화자 확인시스템에서 화자 변이, 잡음환경, 그리고 학습환경과 인식환경의 불일치등이 화자확인에 어려움을 가져다 준다. 본 논문에서는 유무선 전화망에서 화자 확인의 성능을 개선하기 위한 채널 보상 알고리즘을 제안한다. 화자 확인시스템에서 유무선 전화망의 채널 왜곡을 보상하기 위한 방법으로 RBF(Radial Basis Function) 신경망을 이용하여 특징 벡터를 사상하는 알고리즘을 이용하며 유선과 무선의 채널 왜곡을 감소시킨다. 동일한 화자의 유무선의 벡터 영역이 서로 다르므로 등록단계에서 RBF 신경망을 사용하여 화자의 특징 벡터를 유선과 무선의 비슷한 벡터 영역으로 사상하고, 인식단계에서는 유무선의 우도비를 비교하여 결정규칙에 의해 판별한다. 켑스트럼 평균 차감법(CMS) 보다 제안한 채널 보상 알고리즘이 인식율이 향상을 실험에 의해 확인하였다.

  • PDF

Face Recognition Robust to Illumination Change (조명 변화에 강인한 얼굴 인식)

  • 류은진;박철현;구탁모;박길흠
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.465-468
    • /
    • 2000
  • 얼굴 영상은 똑같은 표정의 같은 사람이라도 조명에 따라 매우 다른 얼굴 영상으로 나타난다. 따라서 본 논문에서는 조명 변화에 강인한 얼굴 인식 방법을 제안한다. 제안된 방법은 오프라인 훈련(off-line training)과 온라인 인식(on-line recognition)의 두 부분으로 이루어져 있다. 오프라인 훈련은 PCA(principal component analysis)를 기반으로 한다. 온라인 인식에서는 조명 변화에 대한 보상, 얼굴 특징의 추출, 그리고 인식을 위한 분류 과정의 3 단계로 구성되어 있다. 오프라인 훈련에서는 전체 훈련 얼굴 영상 데이터에 PCA를 적용하여 조명 변화가 최대한 제외된 특징 벡터 공간을 생성한다. 실제 인식 단계에서는 첫 번째로 입력 영상으로 들어온 얼굴 영상에서 조명의 영향을 보상하기 위해 준동형 필터링(homomorphic filtering) 후 밝기 정규화(normalization)를 취한다. 두 번째 단계에서는 입력 데이터의 차원을 줄이고 얼굴 특징 벡터를 구하기 위해 PCA를 수행한다. 마지막 과정으로서 입력 영상의 특징 벡터들과 오프라인에서 미리 구하여진 특징 벡터들의 유사도를 측정하여 얼굴을 인식하게 된다. 실험 결과 제안된 방법은 기존의 Eigenface 방법에 비해 우수한 성능을 나타내었다.

  • PDF

Performance Improvement of Speech Recognition based on Stereo Data with Dimensionally Weighted Bias Compensation (스테레오 데이터에 기반한 차원별 가중 보상에 의한 음성 인식 성능 향상)

  • Kim Jong Hyeon;Song Hwa Jeon;Kim Hyung Soon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.139-142
    • /
    • 2004
  • 훈련 과정과 인식 과정사이의 주변 잡음과 채널 특성으로 인한 환경의 불일치는 음성 인식 성능을 급격히 저하시킨다. 이러한 차이를 극복하기 위해 다양한 전처리 방법이 제안되어 왔으며, 최근에는 스테레오 데이터와 잡음 음성의 Gaussian Mixture Model(GMM)을 이용하여 보상벡터를 구하는 SPLICE 방법이 좋은 성능을 보여주고 있다. 하지만 차원별로 특징벡터를 보상해주는 추정된 보상벡터는 underestimation되는 경향이 있으며, 그 정도가 각각의 차원마다 달라짐이 관찰되었다. 본 논문에서는 SPLICE 방법에 기반하여 추정된 보상벡터와 실제 보상벡터 사이의 관계를 관찰하여 차원별로 다른 가중치를 적용하는 차원별 가중 보상 방법을 제안하였다. 제안한 방법은 Aurora2 Clean-condition인 경우 baseline 실험 결과에 비해 $68\%$의 높은 상대적인 인식 향상율을 얻었다.

  • PDF