Kim, Seungryong;Yoo, Hunjae;Son, Jongin;Oh, Changbum;Sohn, Kwanghoon
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.79-82
/
2012
컴퓨터 비전에서 영상 매칭 기술은 다양한 분야에 응용될 수 있는 기초적인 기술 중에 하나이다. 강인한 영상 매칭을 위해서는 정확하고 독특한 특징점을 검출하는 과정이 중요하다. 기존의 SIFT나 SURF 등 영상 매칭 알고리즘은 등방성 가우시안 필터링을 사용한 스케일 공간을 생성하여 특징점을 검출한다. 이러한 기존의 특징점 검출 방식은 스케일 공간에서 영상의 경계선을 모호하게 만들어 정확한 특징점 검출을 어렵게 만들고 영상 매칭의 성능을 떨어뜨리는 문제점을 가지고 있다. 본 논문에서는 SIFT 알고리즘의 강인한 특징점 검출을 위하여 양방향 필터링을 사용하여 스케일 공간 생성을 제안한다. 이러한 스케일 공간 생성 방식은 스케일 공간에서 영상의 경계선을 보존해 줌으로서 강인한 특징점 검출을 가능하게 하여 영상 매칭 성능을 향상시킨다. 특히 왜곡이 존재하는 영상들의 매칭에서 제안하는 특징점 검출 방법이 적용된 SIFT 알고리즘은 기존의 SIFT 알고리즘보다 우수한 영상 매칭 결과를 보여준다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.458-460
/
1998
본 논문은 주성분 분석으로 시점 기반 고유얼굴(view-based eigenface)을 생성하고, 그에 기반한 얼굴 인식을 수행하고자 한다. 주성분 분석을 통한 고유얼굴 생성은 얼굴 인식의 어려운 문제 중 하나인 특징 선택과 추출이라는 문제를 해결해 준다. 또한 얼굴 표정이나 방향의 변화에도 인식률이 저하되는 것을 방지할 수 있다. 얼굴 영상을 특징공간(고유공간)으로 변환할 때, 원 얼굴영상의 정보를 최대한으로 나타낼 수 있는 최적의 고유치 개수 선택은 얼굴 데이터베이스의 크기와 인식 속도에 영향을 끼친다. 따라서 본 논문에서는 고유치 개수를 고유치의 누적기여율을 이용해서 구한다. 이는 64$\times$64(=4096)차원의 원 얼굴 영상을 5~7차원으로 표현 가능하게 하였다. 그리고, 각 얼굴 방향에 따라 특징공간을 분리해서 생성함으로써 얼굴 방향의 변화에 따라 오인식률을 줄였다. 축소된 차원과 분리된 특징공간은 메모리 사용과 인식속도의 향상에 기여한다. 본 논문에서 얼굴의 인식은 Mahalanobis distance와 재구성 오차율을 고려해서 이루어졌다. 실험은 개인당 세가지 다른 방향을 가지는 얼굴 영상을 이용하여 이루어졌고, 실험결과, 약 93%의 인식률을 보여주었다.
In this paper, we study the enhancement of VQ (Vector Quantization) design for text independent speaker recognition. In a concrete way, we present a non-iterative method which makes a vector quantization codebook and this method performs non-iterative learning so that the computational complexity is epochally reduced The proposed Classified Space VQ (CSVQ) design method for text Independent speaker recognition is generalized from Semi-noniterative VQ design method for text dependent speaker recognition. CSVQ contrasts with the existing desiEn method which uses the iterative learninE algorithm for every traininE speaker. The characteristics of a CSVQ design is as follows. First, the proposed method performs the non-iterative learning by using a Classified Space Codebook. Second, a quantization region of each speaker is equivalent for the quantization region of a Classified Space Codebook. And the quantization point of each speaker is the optimal point for the statistical distribution of each speaker in a quantization region of a Classified Space Codebook. Third, Classified Space Codebook (CSC) is constructed through Sample Vector Formation Method (CSVQ1, 2) and Hyper-Lattice Formation Method (CSVQ 3). In the numerical experiment, we use the 12th met-cepstrum feature vectors of 10 speakers and compare it with the existing method, changing the codebook size from 16 to 128 for each Classified Space Codebook. The recognition rate of the proposed method is 100% for CSVQ1, 2. It is equal to the recognition rate of the existing method. Therefore the proposed CSVQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal and CSVQ with CSC can be applied to a general purpose recognition.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.124-125
/
2021
최근 증강현실(AR), 가상현실(VR), 혼합현실(XR) 분야가 각광받고 있으며, 3차원 공간과 사물을 인식하여 다양한 콘텐츠 서비스를 제공하는 기술이 개발되고 있다[1]. 3차원 공간과 사물을 인식하기 위해 가장 널리 사용되는 방법은 RGB 카메라를 이용하는 것이다[2]. RGB 카메라를 이용하여 촬영한 영상을 분석한 후 분석된 결과를 이용하여 카메라와 환경의 관계를 추정한다. 시차는 사용자가 촬영한 복수의 이미지에서 특징점의 차이를 이용하여 계산된다. 실험적으로 구한 깊이에 대해 계산된 디스패리티에 시차 정보와 스케일링 정보를 더하여 3차원 특징점을 생성한다. 제안하는 알고리즘은 단일 모바일 디바이스에서 획득한 영상을 사용한다. 특징점 매칭을 기반으로한 디스패리티 추정과 시차조정 3D 특징점 생성이다. 실제 깊이 값과 비교했을 때, 생성된 3차원 특징점은 실측값의 10% 이내의 오차가 있음을 실험적으로 증명하였다. 따라서 제안하는 방법을 이용하여 유효한 3차원 특징점을 생성할 수 있다.
교통사고 예측은 차량의 블랙박스 동영상을 통해 사고 발생을 최대한 빨리 예측하는 것을 목표로 한다. 이는 안전한 자율주행 시스템을 보장하는 데 중요한 역할을 한다. 다양한 교통 상황과 카메라의 제한된 시야로 인해 프레임에서 사고 가능성을 조기에 관찰하는 것은 어려운 도전이다. 예측의 핵심 기술은 객체의 시공간 관계를 학습하는 것이다. 본 논문에서는 블랙박스 동영상에서 사고 예측을 위한 계산 모델을 제안한다. 이것을 사용하여 사고 예방을 강화한다. 이 모델은 사고 위험에 대한 운전자의 시각적 인식에서 영감을 받았다. 객체 탐지기는 동영상 프레임에서 다양한 객체를 탐지한다. 탐지한 객체는 노드 생성기와 특징 추출기 동시에 통과한다. 노드 생성기에서 생성한 노드는 GCN 실행기를 사용한다. GCN 실행기는 각 프레임에 대한 객체의 3D 위치 관계를 계산한 후 공간 특징을 취득한다. 동시에 공간 특징과 특징 추출기에서 얻은 객체의 특징은 GRU 실행기로 보내진다. GRU 실행기 안에 시공간 특징을 암기하고 분석하여 교통사고 확률을 예측한다.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.381-384
/
2002
본 논문에서는 실험 영상으로부터 학습된 피부색상 정보를 이용하여 컬러 공간테이블을 생성한 후. 입력된 영상의 컬러와 공간정보를 학습된 피부색상 공간테이블로부터 비교, 분석하여 얼굴후보영역을 찾고자 하였다. 또한 추출된 후보영역의 레이블된 특징정보를 이용하여 지역적 특징을 찾아낸 후 얼굴 특징점의 위치에 따른 형태정보를 이용하여 신뢰할 수 있는 얼굴 영역을 검출하고자 하였다. 제안된 피부색상(Skin-tone)공간테이블은 변환하기 쉽고 계산이 빠른 RGB컬러 공간에서 실험, 평가되었으며, 실시간으로 입력된 영상의 정규화된 책상 값을 유사성 정도에 따라 레이블링하여 보다 빠른 얼굴 후보 영역의 검출과 검증을 할 수 있도록 하였다.
논문에서는 자막의 구조적 특징을 이용하여 축구 비디오 하이라이트를 생성하는 방법을 제시한다. 자막의 구조적 특징은 자막이 갖는 시간적 특징과 공간적 특징으로서 이러한 구조적 특징을 이용하여 자막 프레임 구간과 자막 키 프레임을 추출한다. 그리고 하이라이트 비디오는 자막 키 프레임들에 대한 장면 재설정과 논리적 색인화 및 하이라이트 생성 규칙을 이용하여 생성한다. 마지막으로, 브라우저를 통한 사용자의 항목 선택에 의하여 하이라이트 비디오와 비디오 세그먼트에 대한 검색과 브라우징을 수행할 수 있다.
Journal of Korean Society for Geospatial Information Science
/
v.24
no.4
/
pp.59-66
/
2016
For the performance experiments of databases systems with moving object databases, we need moving object trajectory data sets. For example, benchmark data sets of moving object trajectories are required for experiments on query processing of moving object databases. For those reasons, several tools have been developed for generating moving objects in Euclidean spaces or road network spaces. Indoor space differs from outdoor spaces in many aspects and moving object generator for indoor space should reflect these differences. Even some tools were developed to produce virtual moving object trajectories in indoor space, the movements generated by them are not realistic. In this paper, we present a moving object generation tool for indoor space. First, this tool generates trajectories for pedestrians in an indoor space. And it provides a parametric generation of trajectories considering not only speed, number of pedestrians, minimum distance between pedestrians but also type of spaces, time constraints, and type of pedestrians. We try to reflect the patterns of pedestrians in indoor space as realistic as possible. For the reason of interoperability, several geospatial standards are used in the development of the tool.
In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.21-23
/
1999
결정 트리는 실세계에서 얻어지는 많은 사례들로부터 분류 정보를 얻기 위해 사용되는 유용한 방법중의 하나이다. 분류를 목적으로 사용되는 사례, 즉 데이터들은 실제 현장에서 얻어지기 때문에 관측오류, 불확실성, 주관적인 판단 등의 원인으로 참 값이 아닌 근사 값으로써 기술되는 경우가 많으며, 이러한 잠재적 오류로 인해 잘못된 결정 트리가 생성될 수 있다. 한편, 트리를 생성하는 각각의 과정에서 하나의 특징 값만을 고려하지 않고 두 가지 이상의 특징 값을 동시에 고려하여 결정 트리를 생성할 경우 보다 정확한 분류 정보를 기대할 수 있다. 본 논문에서는 수치 특징 값으로 기술된 데이터로부터 보다 정확한 분류 정보를 얻을 수 있고, 작은 오류에 강건한 사선형 분할 퍼지 결정 트리를 제안한다. 또한 제안된 사선형 분할 퍼지 결정 트리의 생성 절차 및 생성된 결정 트리를 이용하여 새로운 데이터에 분류 정보를 부여하는 추론 과정을 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.