• 제목/요약/키워드: 특징 공간 생성

검색결과 326건 처리시간 0.027초

A Scale-Space based on Bilateral Filtering for Robust Feature Detection in SIFT (SIFT 알고리즘의 강인한 특징점 검출을 위한 양방향 필터 기반 스케일 공간)

  • Kim, Seungryong;Yoo, Hunjae;Son, Jongin;Oh, Changbum;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.79-82
    • /
    • 2012
  • 컴퓨터 비전에서 영상 매칭 기술은 다양한 분야에 응용될 수 있는 기초적인 기술 중에 하나이다. 강인한 영상 매칭을 위해서는 정확하고 독특한 특징점을 검출하는 과정이 중요하다. 기존의 SIFT나 SURF 등 영상 매칭 알고리즘은 등방성 가우시안 필터링을 사용한 스케일 공간을 생성하여 특징점을 검출한다. 이러한 기존의 특징점 검출 방식은 스케일 공간에서 영상의 경계선을 모호하게 만들어 정확한 특징점 검출을 어렵게 만들고 영상 매칭의 성능을 떨어뜨리는 문제점을 가지고 있다. 본 논문에서는 SIFT 알고리즘의 강인한 특징점 검출을 위하여 양방향 필터링을 사용하여 스케일 공간 생성을 제안한다. 이러한 스케일 공간 생성 방식은 스케일 공간에서 영상의 경계선을 보존해 줌으로서 강인한 특징점 검출을 가능하게 하여 영상 매칭 성능을 향상시킨다. 특히 왜곡이 존재하는 영상들의 매칭에서 제안하는 특징점 검출 방법이 적용된 SIFT 알고리즘은 기존의 SIFT 알고리즘보다 우수한 영상 매칭 결과를 보여준다.

  • PDF

Face Recognition Using View-based EigenSpaces (시점 기반 고유공간을 이용한 얼굴 인식)

  • 김일정;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.458-460
    • /
    • 1998
  • 본 논문은 주성분 분석으로 시점 기반 고유얼굴(view-based eigenface)을 생성하고, 그에 기반한 얼굴 인식을 수행하고자 한다. 주성분 분석을 통한 고유얼굴 생성은 얼굴 인식의 어려운 문제 중 하나인 특징 선택과 추출이라는 문제를 해결해 준다. 또한 얼굴 표정이나 방향의 변화에도 인식률이 저하되는 것을 방지할 수 있다. 얼굴 영상을 특징공간(고유공간)으로 변환할 때, 원 얼굴영상의 정보를 최대한으로 나타낼 수 있는 최적의 고유치 개수 선택은 얼굴 데이터베이스의 크기와 인식 속도에 영향을 끼친다. 따라서 본 논문에서는 고유치 개수를 고유치의 누적기여율을 이용해서 구한다. 이는 64$\times$64(=4096)차원의 원 얼굴 영상을 5~7차원으로 표현 가능하게 하였다. 그리고, 각 얼굴 방향에 따라 특징공간을 분리해서 생성함으로써 얼굴 방향의 변화에 따라 오인식률을 줄였다. 축소된 차원과 분리된 특징공간은 메모리 사용과 인식속도의 향상에 기여한다. 본 논문에서 얼굴의 인식은 Mahalanobis distance와 재구성 오차율을 고려해서 이루어졌다. 실험은 개인당 세가지 다른 방향을 가지는 얼굴 영상을 이용하여 이루어졌고, 실험결과, 약 93%의 인식률을 보여주었다.

  • PDF

A Classified Space VQ Design for Text-Independent Speaker Recognition (문맥 독립 화자인식을 위한 공간 분할 벡터 양자기 설계)

  • Lim, Dong-Chul;Lee, Hanig-Sei
    • The KIPS Transactions:PartB
    • /
    • 제10B권6호
    • /
    • pp.673-680
    • /
    • 2003
  • In this paper, we study the enhancement of VQ (Vector Quantization) design for text independent speaker recognition. In a concrete way, we present a non-iterative method which makes a vector quantization codebook and this method performs non-iterative learning so that the computational complexity is epochally reduced The proposed Classified Space VQ (CSVQ) design method for text Independent speaker recognition is generalized from Semi-noniterative VQ design method for text dependent speaker recognition. CSVQ contrasts with the existing desiEn method which uses the iterative learninE algorithm for every traininE speaker. The characteristics of a CSVQ design is as follows. First, the proposed method performs the non-iterative learning by using a Classified Space Codebook. Second, a quantization region of each speaker is equivalent for the quantization region of a Classified Space Codebook. And the quantization point of each speaker is the optimal point for the statistical distribution of each speaker in a quantization region of a Classified Space Codebook. Third, Classified Space Codebook (CSC) is constructed through Sample Vector Formation Method (CSVQ1, 2) and Hyper-Lattice Formation Method (CSVQ 3). In the numerical experiment, we use the 12th met-cepstrum feature vectors of 10 speakers and compare it with the existing method, changing the codebook size from 16 to 128 for each Classified Space Codebook. The recognition rate of the proposed method is 100% for CSVQ1, 2. It is equal to the recognition rate of the existing method. Therefore the proposed CSVQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal and CSVQ with CSC can be applied to a general purpose recognition.

3D FEATURE POINT ESTIMATION BASED ON A SINGLE MOBILE DEVICE (단일 모바일 디바이스를 이용한 3차원 특징점 추출 방법)

  • Kim, Jin-Kyum;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.124-125
    • /
    • 2021
  • 최근 증강현실(AR), 가상현실(VR), 혼합현실(XR) 분야가 각광받고 있으며, 3차원 공간과 사물을 인식하여 다양한 콘텐츠 서비스를 제공하는 기술이 개발되고 있다[1]. 3차원 공간과 사물을 인식하기 위해 가장 널리 사용되는 방법은 RGB 카메라를 이용하는 것이다[2]. RGB 카메라를 이용하여 촬영한 영상을 분석한 후 분석된 결과를 이용하여 카메라와 환경의 관계를 추정한다. 시차는 사용자가 촬영한 복수의 이미지에서 특징점의 차이를 이용하여 계산된다. 실험적으로 구한 깊이에 대해 계산된 디스패리티에 시차 정보와 스케일링 정보를 더하여 3차원 특징점을 생성한다. 제안하는 알고리즘은 단일 모바일 디바이스에서 획득한 영상을 사용한다. 특징점 매칭을 기반으로한 디스패리티 추정과 시차조정 3D 특징점 생성이다. 실제 깊이 값과 비교했을 때, 생성된 3차원 특징점은 실측값의 10% 이내의 오차가 있음을 실험적으로 증명하였다. 따라서 제안하는 방법을 이용하여 유효한 3차원 특징점을 생성할 수 있다.

  • PDF

A Study on Early Prediction Method of Traffic Accidents (교통사고의 사전 예측 방법 연구)

  • Jin, Renjie;Sung, Yunsick
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.441-442
    • /
    • 2022
  • 교통사고 예측은 차량의 블랙박스 동영상을 통해 사고 발생을 최대한 빨리 예측하는 것을 목표로 한다. 이는 안전한 자율주행 시스템을 보장하는 데 중요한 역할을 한다. 다양한 교통 상황과 카메라의 제한된 시야로 인해 프레임에서 사고 가능성을 조기에 관찰하는 것은 어려운 도전이다. 예측의 핵심 기술은 객체의 시공간 관계를 학습하는 것이다. 본 논문에서는 블랙박스 동영상에서 사고 예측을 위한 계산 모델을 제안한다. 이것을 사용하여 사고 예방을 강화한다. 이 모델은 사고 위험에 대한 운전자의 시각적 인식에서 영감을 받았다. 객체 탐지기는 동영상 프레임에서 다양한 객체를 탐지한다. 탐지한 객체는 노드 생성기와 특징 추출기 동시에 통과한다. 노드 생성기에서 생성한 노드는 GCN 실행기를 사용한다. GCN 실행기는 각 프레임에 대한 객체의 3D 위치 관계를 계산한 후 공간 특징을 취득한다. 동시에 공간 특징과 특징 추출기에서 얻은 객체의 특징은 GRU 실행기로 보내진다. GRU 실행기 안에 시공간 특징을 암기하고 분석하여 교통사고 확률을 예측한다.

Face Detection using Skin-tone Color Space Table (피부-색상 공간 테이블을 이용한 얼굴 검출)

  • 고경철;이양원
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.381-384
    • /
    • 2002
  • 본 논문에서는 실험 영상으로부터 학습된 피부색상 정보를 이용하여 컬러 공간테이블을 생성한 후. 입력된 영상의 컬러와 공간정보를 학습된 피부색상 공간테이블로부터 비교, 분석하여 얼굴후보영역을 찾고자 하였다. 또한 추출된 후보영역의 레이블된 특징정보를 이용하여 지역적 특징을 찾아낸 후 얼굴 특징점의 위치에 따른 형태정보를 이용하여 신뢰할 수 있는 얼굴 영역을 검출하고자 하였다. 제안된 피부색상(Skin-tone)공간테이블은 변환하기 쉽고 계산이 빠른 RGB컬러 공간에서 실험, 평가되었으며, 실시간으로 입력된 영상의 정규화된 책상 값을 유사성 정도에 따라 레이블링하여 보다 빠른 얼굴 후보 영역의 검출과 검증을 할 수 있도록 하였다.

  • PDF

Creation of Soccer Video Highlight Using The Structural Features of Caption (장면자막의 구조적 특징을 이용한 축구 비디오 하이라이트 생성)

  • Shin Seong-Yoon;Rhee Yang-Won
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.637-640
    • /
    • 2004
  • 논문에서는 자막의 구조적 특징을 이용하여 축구 비디오 하이라이트를 생성하는 방법을 제시한다. 자막의 구조적 특징은 자막이 갖는 시간적 특징과 공간적 특징으로서 이러한 구조적 특징을 이용하여 자막 프레임 구간과 자막 키 프레임을 추출한다. 그리고 하이라이트 비디오는 자막 키 프레임들에 대한 장면 재설정과 논리적 색인화 및 하이라이트 생성 규칙을 이용하여 생성한다. 마지막으로, 브라우저를 통한 사용자의 항목 선택에 의하여 하이라이트 비디오와 비디오 세그먼트에 대한 검색과 브라우징을 수행할 수 있다.

  • PDF

Synthetic Trajectory Generation Tool for Indoor Moving Objects (실내공간 이동객체 궤적 생성기)

  • Ryoo, Hyung Gyu;Kim, Soo Jin;Li, Ki Joune
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제24권4호
    • /
    • pp.59-66
    • /
    • 2016
  • For the performance experiments of databases systems with moving object databases, we need moving object trajectory data sets. For example, benchmark data sets of moving object trajectories are required for experiments on query processing of moving object databases. For those reasons, several tools have been developed for generating moving objects in Euclidean spaces or road network spaces. Indoor space differs from outdoor spaces in many aspects and moving object generator for indoor space should reflect these differences. Even some tools were developed to produce virtual moving object trajectories in indoor space, the movements generated by them are not realistic. In this paper, we present a moving object generation tool for indoor space. First, this tool generates trajectories for pedestrians in an indoor space. And it provides a parametric generation of trajectories considering not only speed, number of pedestrians, minimum distance between pedestrians but also type of spaces, time constraints, and type of pedestrians. We try to reflect the patterns of pedestrians in indoor space as realistic as possible. For the reason of interoperability, several geospatial standards are used in the development of the tool.

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • 제2권3호
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.

A Fuzzy Decision Tree to Partition Feature Space with Oblique Planes (특징 공간을 사선 분할하는 퍼지 결정 트리)

  • 이우항;이건명
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.21-23
    • /
    • 1999
  • 결정 트리는 실세계에서 얻어지는 많은 사례들로부터 분류 정보를 얻기 위해 사용되는 유용한 방법중의 하나이다. 분류를 목적으로 사용되는 사례, 즉 데이터들은 실제 현장에서 얻어지기 때문에 관측오류, 불확실성, 주관적인 판단 등의 원인으로 참 값이 아닌 근사 값으로써 기술되는 경우가 많으며, 이러한 잠재적 오류로 인해 잘못된 결정 트리가 생성될 수 있다. 한편, 트리를 생성하는 각각의 과정에서 하나의 특징 값만을 고려하지 않고 두 가지 이상의 특징 값을 동시에 고려하여 결정 트리를 생성할 경우 보다 정확한 분류 정보를 기대할 수 있다. 본 논문에서는 수치 특징 값으로 기술된 데이터로부터 보다 정확한 분류 정보를 얻을 수 있고, 작은 오류에 강건한 사선형 분할 퍼지 결정 트리를 제안한다. 또한 제안된 사선형 분할 퍼지 결정 트리의 생성 절차 및 생성된 결정 트리를 이용하여 새로운 데이터에 분류 정보를 부여하는 추론 과정을 소개한다.

  • PDF