Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.4
s.316
/
pp.1-7
/
2007
In this paper, we analyze geometrical relations of 3D shape reconstruction from 2D images taken under anne projection. The purpose of this research is to contribute to more accurate 3-D reconstruction under noise distribution by analyzing geometrically the 2D to 3D relationship. In situation for no missing feature points (FPs) or no noise in 2D image plane, the accurate solution of 3D shape reconstruction is blown to be provided by Singular Yalue Decomposition (SVD) factorization. However, if several FPs not been observed because of object occlusion and image low resolution, and so on, there is no simple solution. Moreover, the 3D shape reconstructed from noise-distributed FPs is peturbed because of the influence of the noise. This paper focuses on analysis of geometrical properties which can interpret the missing FPs even though the noise is distributed on other FPs.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.7B
/
pp.957-967
/
2001
본 논문에서는 모델 기반 지각적 그룹핑을 이용한 3차원 다면체의 인식 및 형상 복원에 관한 새로운 기법을 제안한다. 2차원 입력 영상과 여기에서 추출된 특징들의 3차원 특징을 거리 측정기를 이용하여 추출하여 인식 및 복원의 기본 특징으로 이용한다. 이 때, 모델의 3차원 기하학적 정보는 결정 트리 분류기에 의하여 학습되며 지각적 그룹핑은 이와 같은 모델 기반으로 이루어진다. 또한, 1차 그룹핑의 결과로 얻어진 3차원 직선 특징간의 관계는 Gestalt 그래프로 표현되며 이것의 부그래프 분할을 통하여 인식을 위한 후보 그룹이 생성된다. 마지막으로 각각의 후보 그룹은 3차원 모델과 정렬되어 가장 잘 부합되는 그룹을 인식 결과로 생성하게 된다. 그리고 정렬의 결과로서 2차원 텍스춰를 추출하여 3차원 모델에 매핑함으로써 실제적인 3차원 형상을 복원할 수 있다. 제안하는 알고리듬의 성능을 평가하기 위하여 불록 영상과 지형 모델 보드 영상에 대하여 실험을 수행하였다. 실험 결과, 모델 기반의 그룹핑 기법은 결과 그룹의 수를 상당히 감소시켰으며 또한 잡음과 가리워짐에 강건한 인식과 복원 결과가 얻어졌다.
3D reconstruction means that reconstructing the 3D shape of the object in an image and a video. We proposed a progressive occupancy network architecture that can recover not only the overall shape of the object but also the local details. Unlike the original occupancy network, which uses a feature vector embedding information of the whole image, we extract and utilize the different levels of image features depending on the receptive field size. We also propose a novel network architecture that applies the image features sequentially to the decoder blocks in the decoder and improves the quality of the reconstructed 3D shape progressively. In addition, we design a novel decoder block structure that combines the different levels of image features properly and uses them for updating the input point feature. We trained our progressive occupancy network with ShapeNet. We compare its representation power with two prior methods, including prior occupancy network(ONet) and the recent work(DISN) that used different levels of image features like ours. From the perspective of evaluation metrics, our network shows better performance than ONet for all the metrics, and it achieved a little better or a compatible score with DISN. For visualization results, we found that our method successfully reconstructs the local details that ONet misses. Also, compare with DISN that fails to reconstruct the thin parts or occluded parts of the object, our progressive occupancy network successfully catches the parts. These results validate the usefulness of the proposed network architecture.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.1
/
pp.122-131
/
2011
A widely used single image-based 3D face reconstruction method, 3D morphable shape model, reconstructs an accurate 3D facial shape when 2D facial feature points are correctly extracted from an input face image. However, in the case that a user's cooperation is not available such as a real-time 3D face reconstruction system, this method can be vulnerable to the errors of automatic facial feature point extraction. In order to solve this problem, we automatically classify extracted facial feature points into two groups, erroneous and correct ones, and then reconstruct a 3D facial shape by using only the correctly extracted facial feature points. The experimental results showed that the 3D reconstruction performance of the proposed method was remarkably improved compared to that of the previous method which does not consider the errors of automatic facial feature point extraction.
Proceedings of the Korean Society of Precision Engineering Conference
/
2001.04a
/
pp.367-372
/
2001
Feature restoration is that restore feature to 3D solid model using the feature information in STEP AP224. Feature is very important in CAPP, but feature information is defined very complicated in STEP AP224. This paper recommends the algorithm of extraction the feature information in physical STEP AP224file. This program import STEP AP224 file, parse the geometric and topological information, the tolerance data, and feature information line-by-line. After importation and parsing, store data into database. Feature restoration module analyze database including feature information, extract feature information, e.g. feature type, feature's parameter, etc., analyze the relationship and then restore feature to 3D solid model.
This paper proposes a 3D structure recovery and registration method that uses four or more common points. For each frame of a given video, a partial structure is recovered using tracked points. The 3D coordinates, camera positions and camera directions are computed at once by our improved scaled orthographic factorization method. The partially recovered point sets are parts of a whole model. A registration of point sets makes the complete shape. The recovered subsets are integrated by transforming each coordinate system of the local point subset into a common basis coordinate system. The process of shape recovery and integration is performed uniformly and linearly without any nonlinear iterative process and without loss of accuracy. The execution time for the integration is significantly reduced relative to the conventional ICP method. Due to the fast recovery and registration framework, our shape recovery scheme is applicable to various interactive video applications. The processing time per frame is under 0.01 seconds in most cases and the integration error is under 0.1mm on average.
Proceedings of the Korean Society of Precision Engineering Conference
/
2004.05a
/
pp.45-45
/
2004
B-rep 기반의 솔리드 복원 기법은 비교적 복잡한 물체의 경우에도 복원이 잘 되지만, 후보면의 수가 증가함에 따라 탐색 공간 및 시간이 기하급수적으로 늘어나는 단점이 있다. 빈번한 조합 탐색과 복잡한 기하 연산으로 인해 도면이 복잡해질수록 복원 효율성이 떨어지고, 모호성이 발생하는 문제가 있다. 그러나, 이차 곡면을 포함하는 복잡한 물체에 대해서도 복원이 가능하므로 복원 대상 범위가 넓다고 할 수 있다. CSG 기반의 솔리드 복원 기법은 세 투영면에서 돌출 시킨 각각의 솔리드를 서로 교차시켜서 3차원 물체를 복원하는 방법으로, 복잡한 조합 탐색이나 기하 연산 작업을 하지 않게 때문에 비교적 효율적인 복원이 가능하다.(중략)
Journal of the Institute of Convergence Signal Processing
/
v.6
no.3
/
pp.112-119
/
2005
In this paper, a model of neural circuit was proposed, which abstracts the depth information in two images gotten from right and left retinas. The proposed neural circuit corresponds to binocular stereo vision based on psychologic and physiological knowledge, and we examine a restoration method of three-dimensional surface. In case of drawing a disparity based on characteristics of images, we can not abstract the depth information correctly if resemblant characteristics are repeated on the boundary region of an object. A binocular disparity is decided in a model of neural circuit by abstraction, synthesis, and correction of a disparity. And we propose a method which restores three-dimensional shape by correcting a depth information, and also restores a three-dimensional surface by mapping a left input image on the restored three-dimensional shape. And we confirmed that the computation time for disparity abstraction can be greatly reduced through the simulation.
본 논문에서는 비디오에서의 특징점 추적을 통해 얻은 2D 좌표를 이용한 3D 구조를 추정하는 방법과 네 점 이상의 공통점을 이용한 융합 방법을 제안한다. 영상의 각 프레임에서 공통되는 특징점을 이용하여 형상을 추정한다. 영상의 각 프레임에 대한 특징점의 추적은 Lucas-Kanade 방법을 사용하였다. 3D 좌표 추정 방법으로 개선된 직교분해기법을 사용하였다. 개선된 직교분해기법에서는 3D 좌표를 복원함과 동시에 카메라의 위치와 방향을 계산할 수 있다. 복원된 부분 데이터들은 전체를 이루는 일부분이므로, 융합을 통해 완성된 모습을 만들 수 있다. 복원된 부분 데이터들의 서로 다른 좌표계를 기준 좌표계로 변환함으로써 융합할 수 있다. 융합은 카메라의 모션에 해당하는 카메라의 위치와 방향에 의존된다. 융합 과정은 모두 선형으로 평균 0.5초 이하의 수행 속도를 보이며 융합의 오차는 평균 0.1cm 이하의 오차를 보였다.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
1998.04a
/
pp.151-154
/
1998
본 논문에서는 스테레오 정합기법을 이용하여 2차원 물체의 형상정보로부터 3차원 형상정보를 자동 추출하는 시스템을 제안한다. 본 논문에서는 정확한 3차원 형상추출을 위해서 밝기값기반 방법과 특징기반 방법의 장점을 살려 두 방법을 통합 사용하였다. 또한, 오정합을 최소화하고 처리속도를 향상시키기 위해서Coarst-to-fine 방법을 적용하였다. 제안한 방법에 의해 도출된 변이영상(Disparity map)은 3차원 그래픽을 이용하여 모델링에 적용함으로써 3차원 형상정보 추출의 타당성 및 가상공간에서의 적용 가능성을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.