본 논문은 정사투영 카메라로부터 얻어진 2차원 영상으로부터 복원된 3차원 형상과의 기하학적 관계를 분석한다 본 연구의 목적은 2차원과 3차원 관계를 기하학적으로 분석함으로서 잡음에 강인한 3차원 형상 복원에 기여하기 위함이다. 만약 3차원 형상 복원 시 특징점이 손실되지 않고 잡음이 존재하지 않는다면 3차원 형상복원은 고유치 행렬인수분해로 정확하게 얻을 수 있다. 그렇지만 실제 촬영된 피사체의 일부가 보이지 않는 오클루션 또는 낮은 해상도 등의 영향으로 인해, 피사체의 특징점 일부가 손실된 경우는 고유치 행렬인수분해의 계산적 문제가 발생되어 정확한 3차원 복원을 할 수 없게 된다. 더욱이 추출된 특징 점에 잡음이 포함될 경우는 복원된 3차원 형상 역시 그 섭동 영향을 받게 된다. 본 연구는 이러한 잡음환경에서도 손실된 특징 점을 정확히 유추하기 위해 2차원과 3차원 사이의 기하학적 특성을 분석하는데 포커스 한다.
본 논문에서는 모델 기반 지각적 그룹핑을 이용한 3차원 다면체의 인식 및 형상 복원에 관한 새로운 기법을 제안한다. 2차원 입력 영상과 여기에서 추출된 특징들의 3차원 특징을 거리 측정기를 이용하여 추출하여 인식 및 복원의 기본 특징으로 이용한다. 이 때, 모델의 3차원 기하학적 정보는 결정 트리 분류기에 의하여 학습되며 지각적 그룹핑은 이와 같은 모델 기반으로 이루어진다. 또한, 1차 그룹핑의 결과로 얻어진 3차원 직선 특징간의 관계는 Gestalt 그래프로 표현되며 이것의 부그래프 분할을 통하여 인식을 위한 후보 그룹이 생성된다. 마지막으로 각각의 후보 그룹은 3차원 모델과 정렬되어 가장 잘 부합되는 그룹을 인식 결과로 생성하게 된다. 그리고 정렬의 결과로서 2차원 텍스춰를 추출하여 3차원 모델에 매핑함으로써 실제적인 3차원 형상을 복원할 수 있다. 제안하는 알고리듬의 성능을 평가하기 위하여 불록 영상과 지형 모델 보드 영상에 대하여 실험을 수행하였다. 실험 결과, 모델 기반의 그룹핑 기법은 결과 그룹의 수를 상당히 감소시켰으며 또한 잡음과 가리워짐에 강건한 인식과 복원 결과가 얻어졌다.
3차원 형상 복원(3D reconstruction)은 이미지 또는 영상 속 물체를 3차원 형상으로 복원하는 것을 말한다. 본 연구는 물체의 전반적 형상을 넘어 세부적인 모습까지 복원할 수 있는 표현력을 가진 3차원 형상 복원 네트워크인, 점진적 점유 네트워크를 제안한다. 본 연구가 제안하는 네트워크는 이미지 전체의 정보를 담고 있는 특징(feature)을 사용하는 기존 점유 네트워크와 달리, 수용 영역(receptive field)의 크기에 따라 다양한 수준의 이미지 특징을 추출해서 사용한다. 그리고, 다양한 수준의 이미지 특징을 디코더(decoder) 내 디코더 블록(decoder block)들에 순차적으로 반영하여, 형상 복원의 품질이 단계적으로 개선하는 네트워크 구조를 제안한다. 본 연구는 또한, 다양한 수준의 이미지 특징을 적절히 조합하여 사용하는 디코더 블록구조를 제안한다. 본 연구는 제안하는 네트워크의 성능 검증을 위해 ShapeNet 데이터 세트를 사용하였으며, 기존의 점유 네트워크(ONet) 및 다양한 수준의 이미지 특징을 사용하는 최신 연구(DISN)와 성능 비교하였다. 그 결과, 기존 점유 네트워크 대비 세 가지 검증 지표 모두에서 높은 성능을 달성하였으며, DISN과는 대등한 수준의 성능을 보여주었다. 그리고 복원 형상의 시각적 비교 결과, 본 연구의 점진적 점유 네트워크가 기존 점유 네트워크 대비, 물체의 세부 모습을 잘 복원하는 것을 확인하였다. 또한, DISN이 복원 실패한 물체의 얇은 부분 또는 이미지에서 가려진 부분을 본 연구의 네트워크는 잘 잡아내는 결과를 확인할 수 있었다. 이러한 결과는 본 연구가 제안하는 점진적 점유 네트워크의 유용성을 검증하는 결과다.
최근에 널리 사용되고 있는 단일 영상 기반의 3차원 얼굴 복원 방법인 변형 가능한 3차원 얼굴 형상 모델(3D morphable shape model)은 입력 영상으로부터 2차원 얼굴 특징점들을 정확하게 추출할 경우, 입력 얼굴과 유사한 3차원 얼굴 형상을 생성할 수 있다. 그러나 실시간 3차원 얼굴 복원 시스템과 같이 사용자의 협조가 불가능한 경우에는 자동으로 얼굴 특징점들을 추출해야 하기 때문에, 특징점 추출 오류가 발생하여 정확한 3차원 얼굴 형상을 생성하기 어려운 문제가 있다. 이러한 문제를 해결하기 위해서, 본 논문에서는 특징점 추출 시 오추출 특징점과 정추출 특징점을 자동으로 분류하고, 정추출 특징점들만을 이용하여 3차원 얼굴을 복원하는 방법을 제안하였다. 실험결과에서는 특징점 자동 추출 오류를 고려하지 않은 기존 방법과 비교한 결과, 제안방법의 3차원 얼굴 복원 성능이 크게 향상되었음을 확인하였다.
Feature restoration is that restore feature to 3D solid model using the feature information in STEP AP224. Feature is very important in CAPP, but feature information is defined very complicated in STEP AP224. This paper recommends the algorithm of extraction the feature information in physical STEP AP224file. This program import STEP AP224 file, parse the geometric and topological information, the tolerance data, and feature information line-by-line. After importation and parsing, store data into database. Feature restoration module analyze database including feature information, extract feature information, e.g. feature type, feature's parameter, etc., analyze the relationship and then restore feature to 3D solid model.
본 논문에서는 비디오에서의 특징점 추적을 통해 얻은 2차원 좌표를 이용하여 3차원 구조를 계산하고 부분적으로 복원된 형상들을 점진적으로 융합하여 전체 형상을 생성하는 기법을 제안한다. 영상의 각 프레임에서 공통적으로 추적된 특징점들을 이용하여 형상을 추정한다. 3차원 좌표 추정 방법으로 개선된 직교분해기법을 사용하였다. 개선된 직교분해기법에서는 3차원 좌표를 복원함과 동시에 카메라의 위치와 방향을 계산할 수 있다. 복원된 부분 형상의 융합을 통해 입체적인 전체 형상을 만든다. 복원된 부분 데이터들의 서로 다른 좌표계를 기준 좌표계로 변환하여 하나의 전체 형상으로 융합한다. 형상 추정 과정과 융합 과정이 통합적으로 수행되며 반복적 최적화 작업을 수행하지 않고 선형적으로 이루어진다. 이는 기존 융합 방법인 ICP(Iterative Closest Point) 방법보다 융합 속도를 향상시켜 빠른 형상 복원이 가능하다. 융합 시간은 평균 0.01초 이내의 수행 속도를 보이며 융합의 오차는 평균 1.0mm 이하의 오차를 보였다.
B-rep 기반의 솔리드 복원 기법은 비교적 복잡한 물체의 경우에도 복원이 잘 되지만, 후보면의 수가 증가함에 따라 탐색 공간 및 시간이 기하급수적으로 늘어나는 단점이 있다. 빈번한 조합 탐색과 복잡한 기하 연산으로 인해 도면이 복잡해질수록 복원 효율성이 떨어지고, 모호성이 발생하는 문제가 있다. 그러나, 이차 곡면을 포함하는 복잡한 물체에 대해서도 복원이 가능하므로 복원 대상 범위가 넓다고 할 수 있다. CSG 기반의 솔리드 복원 기법은 세 투영면에서 돌출 시킨 각각의 솔리드를 서로 교차시켜서 3차원 물체를 복원하는 방법으로, 복잡한 조합 탐색이나 기하 연산 작업을 하지 않게 때문에 비교적 효율적인 복원이 가능하다.(중략)
본 논문에서는 심리학 생리학적 지식을 기초로 하여 좌우 망막을 양안 입체시로 대응시켜 얻은 2매의 화상으로부터 깊이 정보를 추출하는 신경회로 모델을 제안하고 3차원 표면의 복원법을 검토한다. 화상의 특징을 근거로 하여 시차를 추출할 경우, 경계 부분에 유사한 특징이 반복된다면 경우 올바른 깊이 정보를 검출할 수 없다. 본 논문에서 제안된 신경회로 모델은 시차의 추출, 시차의 통합, 시차의 보간에 의하여 시차를 결정한다. 또한, 깊이 정보를 보간하여 3차원 형상을 복원하고 그 복원된 3차원 형상에 좌입력 화상을 투영하여 3차원 표면을 복원하는 법을 제안하고, 실험을 통하여 시차 추출 시간을 대폭 줄일 수 있음을 확인하였다.
본 논문에서는 비디오에서의 특징점 추적을 통해 얻은 2D 좌표를 이용한 3D 구조를 추정하는 방법과 네 점 이상의 공통점을 이용한 융합 방법을 제안한다. 영상의 각 프레임에서 공통되는 특징점을 이용하여 형상을 추정한다. 영상의 각 프레임에 대한 특징점의 추적은 Lucas-Kanade 방법을 사용하였다. 3D 좌표 추정 방법으로 개선된 직교분해기법을 사용하였다. 개선된 직교분해기법에서는 3D 좌표를 복원함과 동시에 카메라의 위치와 방향을 계산할 수 있다. 복원된 부분 데이터들은 전체를 이루는 일부분이므로, 융합을 통해 완성된 모습을 만들 수 있다. 복원된 부분 데이터들의 서로 다른 좌표계를 기준 좌표계로 변환함으로써 융합할 수 있다. 융합은 카메라의 모션에 해당하는 카메라의 위치와 방향에 의존된다. 융합 과정은 모두 선형으로 평균 0.5초 이하의 수행 속도를 보이며 융합의 오차는 평균 0.1cm 이하의 오차를 보였다.
본 논문에서는 스테레오 정합기법을 이용하여 2차원 물체의 형상정보로부터 3차원 형상정보를 자동 추출하는 시스템을 제안한다. 본 논문에서는 정확한 3차원 형상추출을 위해서 밝기값기반 방법과 특징기반 방법의 장점을 살려 두 방법을 통합 사용하였다. 또한, 오정합을 최소화하고 처리속도를 향상시키기 위해서Coarst-to-fine 방법을 적용하였다. 제안한 방법에 의해 도출된 변이영상(Disparity map)은 3차원 그래픽을 이용하여 모델링에 적용함으로써 3차원 형상정보 추출의 타당성 및 가상공간에서의 적용 가능성을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.