• 제목/요약/키워드: 특징점 추출 알고리즘

검색결과 479건 처리시간 0.026초

구조적 속성과 어휘적 특징에 기반한 안전기준 고찰 (A Review of Safety Standards in Korea based on Structural Attributes and Lexical Characteristics)

  • 임수정;박덕근
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.353-366
    • /
    • 2019
  • 사회발달로 인해 안전기준이 세분화 전문화되면서 관련 법령 또한 그 수가 점차 증가하여 법령 내에서 중복 또는 상충의 문제점이 나타나고 있다. 우리나라 법령에 존재하는 모든 안전기준을 수집한 후 중복 또는 상충문제를 찾아내기 위해서는 우선 안전기준이 가지는 특성들을 분석할 필요가 있다. 본 연구에서는 모든 안전기준에서 나타나는 공통요소와 특정 안전기준에서만 나타나는 특이점을 추출하면서 안전기준의 특성을 크게 구조적, 어휘적 부분으로 구분하였다. 분석결과, 안전기준의 구조적 속성은 2가지, 어휘적 특징은 4가지로 도출되었다. 이러한 특성들이 안전기준을 관리할 향후 시스템에 미치는 영향에 대해서도 추가로 검토하였다. 본 연구를 기반으로 향후 더 많은 안전기준의 구조 및 어휘적 특성들이 축적된다면 효율적인 안전기준의 수집.분석 알고리즘 개발이 가능해져 결국 법령내 안전기준의 중복 상충 문제점 해소에 도움이 될 것이다.

RGB-D 영상 포맷을 위한 결합형 무작위 Fern을 이용한 객체 검출 (Object Detection Using Combined Random Fern for RGB-D Image Format)

  • 임승욱;김유선;이시웅
    • 한국콘텐츠학회논문지
    • /
    • 제16권9호
    • /
    • pp.451-459
    • /
    • 2016
  • 객체 검출은 다양한 컴퓨터 비전 응용 분야의 핵심 기술이지만 조명 변화와 기하학적 왜곡에 강인성을 갖기 위해서는 막대한 계산이 필요한 기술이다. 최근에 이 문제를 분류기의 토대로 체계화함으로써 효과적으로 해결하기 위한 접근법들이 소개되고 있다. 그 중 무작위 fern 알고리즘은 단순한 구조와 높은 인식 성능으로 많은 관심을 받고 있다. 그러나 기존의 무작위 fern 알고리즘은 화소간의 밝기 차이만으로 특징을 추출하고 있어 대조, 조명 변화와 같은 밝기 변화나 잡음에 대해 취약점을 갖는다. 본 논문에서는 기존의 무작위 fern의 단점을 개선하기 위해 패치의 기하학적 구조를 반영할 수 있는 깊이 정보를 결합시킨 결합형 무작위 fern을 새로이 제안하고 이를 이용한 객체 검출기의 성능 개선 방안을 제시한다. 모의실험을 통해 결합형 무작위 fern이 기존 방식보다 조명의 영향이나 잡음에 강인함을 보인다.

주성분 분석 기반의 CPA 성능 향상 연구 (A Study on CPA Performance Enhancement using the PCA)

  • 백상수;장승규;박애선;한동국;류재철
    • 정보보호학회논문지
    • /
    • 제24권5호
    • /
    • pp.1013-1022
    • /
    • 2014
  • 상관관계 전력 분석(Correlation Power Analysis, CPA)은 암호장비에서 알고리즘이 수행될 때 누설되는 전력 소비 신호와 알고리즘의 중간 계산 값의 상관도를 이용하여 비밀키를 추출하는 부채널 공격 방법이다. CPA는 누설된 전력 소비의 시간적인 동기 또는 잡음에 의해 공격 성능이 영향을 받는다. 최근 전력 분석의 성능 향상을 위해 다양한 신호 처리 기술이 연구되어지고 있으며, 그 중 주성분 분석 기반의 신호 압축 기술이 제안되었다. 주성분 분석 기반의 신호 압축은 주성분 선택 방법에 따라 분석 성능에 영향을 주기 때문에 주성분 선택은 중요한 문제이다. 본 논문에서는 CPA의 성능 향상을 위해 전력 소비와의 상관도가 높은 주성분을 선택하는 주성분 선택 기법을 제안한다. 또한 각 주성분이 갖는 특징이 다르다는 점을 이용한 주성분 기반 CPA 분석 기법을 제안하고, 기존 방법과 제안하는 방법의 실험적인 분석을 통해 공격 성능이 향상됨을 보인다.

QRS 패턴에 의한 QS 간격과 R파의 진폭을 이용한 조기심실수축 분류 (PVC Classification based on QRS Pattern using QS Interval and R Wave Amplitude)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.825-832
    • /
    • 2014
  • 조기심실수축 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지 이론, SVM 등과 같은 비선형 방법이 주로 사용되어 왔다. 이러한 대부분의 방법들은 P-QRS-T 지점의 정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하다. 연산의 복잡도를 줄이기 위한 여러 가지 방법들이 제안되어 왔지만, 분류의 정확도가 떨어지는 문제점이 있었다. 또한 PVC는 개인의 특징에 따라 다양한 QRS 패턴이 존재하기 때문에 정확도에 한계가 있다. 따라서 이러한 문제점을 극복하기 위해서는 최소한의 특징점을 추출함으로써 연산의 복잡도를 줄이고, 개인마다 다른 QRS 패턴에 따라 PVC를 정확하게 분류할 수 있는 알고리즘이 필요하다. 따라서 본 연구에서는 QRS 패턴에 따른 QS 간격과 R파 진폭 변화율을 이용한 PVC 분류 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파, RR 간격, QRS 패턴을 추출한다. 이후 그 패턴에 따른 QS 간격과 R파의 진폭 변화율에 따라 PVC를 분류하였다. 제안한 방법의 우수성을 입증하기 위해 PVC가 30개 이상 포함된 MIT-BIH 9개의 레코드를 대상으로 한 R파의 평균 검출율은 99.02%의 성능을 나타내었으며, PVC 부정맥은 각각 93.72%의 평균 분류율을 나타내었다.

SIFT 알고리즘을 이용한 혼합형 모바일 교육 시스템 (Mixed Mobile Education System using SIFT Algorithm)

  • 홍광진;정기철;한은정;양종열
    • 한국산업정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.69-79
    • /
    • 2008
  • 무선 인터넷과 모바일 기기의 보급으로 언제 어디서나 원하는 정보를 얻을 수 있는 유비쿼터스 환경을 위한 인프라가 구축되면서 교육을 포함한 다양한 분야에서 오프라인과 온라인 컨텐츠를 동시에 이용함으로써 정보 전달의 효율성을 높일 수 있는 방법에 대한 연구가 활발하게 이루어지고 있다. 본 논문은 사용자에게 모바일 기기를 이용하여 오프라인과 온라인 컨텐츠를 함께 제공하여 교육의 효과를 높일 수 있는 혼합형 모바일 교육 시스템(Mixed Mobile Education System: MME)을 제안한다. 제안된 시스템은 기존의 연구와 달리 사용자에게 자연스러운 환경을 제공하기 위해서 부가적인 태그를 사용하지 않는다. 태그를 사용하는 시스템의 경우 새로운 데이터의 등록이 어렵고 유사한 내용의 오프라인 컨텐츠 사용이 불가능하기 때문이다. 본 논문에서 우리는 저화질의 카메라를 통해 입력받은 영상에서 잡음 색상 왜곡, 크기 및 기울기 변화에 영향을 적게 받는 특징점을 추출하고 오프라인 컨텐츠를 인식하기 위해 Scale Invariant Feature Transform(SIFT) 알고리즘을 사용하였다. 또한 클라이언트-서버 구조를 사용함으로써 모바일 장치의 제한적인 저장 능력 문제를 해결하고 데이터의 등록 및 수정이 용이하도록 하였다. 실험을 통해 기존의 흔합형 교육 시스템과의 성능을 비교하고 제안된 시스템의 장단점을 확인하였으며, 시스템을 실생활에 적용하였을 경우 다양한 상황에서도 사용자에게 만족할만한 성능을 제공함을 확인하였다.

  • PDF

의료정보 보호를 위해 얼굴인식에 필요한 효과적인 시선 검출 (Effective Eye Detection for Face Recognition to Protect Medical Information)

  • 김숙일;석경휴
    • 한국전자통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.923-932
    • /
    • 2017
  • 본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템과 얼굴인식에 필요한 GRNN(: Generalized Regression Neural Network) 알고리즘을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출하여 의료정보 보호에 도움을 주고자 한다.

광학적 상관관계를 기반으로 하는 지문인식 방법에 관한 연구 (A study on correlation-based fingerprint recognition method)

  • 김상백;주성현;정만호
    • 한국광학회지
    • /
    • 제13권6호
    • /
    • pp.493-500
    • /
    • 2002
  • 지문 인식은 보통 지문 영상의 획득과 획득된 지문 영상을 비교하는 단계로 구분해서 생각할 수 있다. 본 논문에서는 지문 영상을 획득하는 단계에서 지문 입력 센서를 사용하여 연구의 초점을 지문의 비교 방법에 맞추었다. 지문 입력 센서에서 는 지문 영상이 영상처리되어 출력되기 때문에 지문을 획득할 때 발생할 수 있는 잡음들에 대해서는 고려하지 않았고 사용자가 임의적으로 여러 번 지문을 입력하게 하여 회전과 이동이 복합적으로 존재하는 영상 왜곡을 고려하였다. 사용자의 지문 인식을 위한 방법으로 광학적 상관관계(Optical Correlation)를 출력하는 Non-linear Joint Transform Correlator(NRC)를 컴퓨터 상에서 구현하였고, 지문 입력 시에 발생할 수 있는 왜곡에 불변적인 특징을 갖도록 지문의 중심점을 찾는 알고리즘을 추가하여 지문 인식의 정확도를 보완하였다. 또한, 찾아진 지문 영상의 중심점을 가지고 100$\times$100픽셀 크기의 중심 영역만을 추출하여 지문 인식에 필요한 시간과 입력 영상의 정보를 줄이면서 높은 정확도를 갖는 매칭 기법을 제시하였다

선형 판별분석과 공통벡터 추출방법을 이용한 음성인식 (Speech Recognition Using Linear Discriminant Analysis and Common Vector Extraction)

  • 남명우;노승용
    • 한국음향학회지
    • /
    • 제20권4호
    • /
    • pp.35-41
    • /
    • 2001
  • 본 논문에서는 선형 판별분석 (LDA: Linear Discriminant Analysis)과 공통벡터 추출방법을 이용한 음성인식방법을 제안하였다. 음성신호는 화자의 성별, 나이, 출생지, 주위 잡음, 정신적 상태, 발성기관의 구조 등과 같은 다양한 정보를 포함하고 있다. 이로 인해 같은 음성신호라 할지라도 서로 다른 화자가 발성하게 되면 서로 다른 특성을 보이게 된다. 음성신호의 이러한 성질은 같은 음성군 (class)에 포함된 공통된 특성벡터를 추출하는 일을 상당히 어렵게 한다. 음성신호에서 공통된 특징 벡터를 추출하는 방법은 KLT (Karhunen-Loeve Transformation)와 같이 선형 대수적인 접근방법이 많이 사용되어지고 있으나, 본 논문에서는 M. Bilginer et al.이 제안한 공통벡터 추출 방법을 사용하였다. M. Bilginer et al.이 제안한 방법은 주어진 훈련 음성신호들에 대하여 최적의 공통 벡터를 추출하여 주면서 공통벡터 추출에 사용된 훈련 데이터에 대해서는 100%의 인식결과를 보여준다. 그러나 공통벡터 추출을 위한 훈련 음성신호의 수를 무한히 늘릴 수 없다는 점과 공통벡터들간의 구별정보 (discriminant information)가 정의되지 않았다는 단점이 있다. 본 논문에서는 단어그룹간 (class) 구별정보를 추출된 공통벡터와 결합해 단어간의 오인식률 (error rate)을 감소시킬 수 있는 방법과 공통벡터 추출방법에 적합한 파라미터 가공 방법을 제안하였다. 공통벡터 추출방법은 음성신호의 시간 축 정규화 방법과 벡터의 차원 크기에 따라 인식시간과 인식률에 영향을 받는다. 따라서 부적절한 시간 축 정렬과 너무 큰 벡터의 차원 수는 인식률 저하 등과 같이 알고리즘의 효율성을 떨어뜨린다. 본 논문에서 제안한 방법을 사용하여 실험한 결과 알고리즘의 효율성이 증가되었으며, 기존방법보다 약 2%정도의 향상된 인식률을 얻을 수 있었다.낮추는 효과를 나타내었다.다. 이상의 결과를 통하여 추출 온도와 용매 농도에 따른 수율의 차이가 있었으며 free radical 소거 활성에서는 종자 에탄을 추출물이 과피 에탄올 추출물 보다 145배 이상의 현저히 높은 활성을 나타내었다.을 나타내었다.'Lian(연)' : repeatability, continuance, plenty and intercommunicate, 2. 'Lian(연)'-'Lian(염)': integrity, 3. 'He (하)'-'He(화)' : peace, harmony and combination, 4. 'He(하)'-'He(하)' : clear river, 5.'He(하)'-'He(하)' ; all work goes well. When the Chinese use lotus patterns in lucky omen patterns, same pronunciation and pitch of Chinese language more prominent than natural properties or the image of Buddhism. I guess that it cause praying individual's peace and happiness more serious than philosophical meaning or symbol that base in Buddhism for ordinary people.ML., -9.00~12.49 and -19.81~19.81%, respectively). Therefore, it is concluded that the two formulations are bioequivalent for both the extent and the rate of absorption after single dose administration.ation.ion.ion.ation.ion.n. fibrosis, collagen bundle) was

  • PDF

노이즈 영상으로부터 모아레 기준 위상의 강인 자동 생성 방법 (A Robust Method for Automatic Generation of Moire Reference Phase from Noisy Image)

  • 고국원;김민영
    • 한국산학기술학회논문지
    • /
    • 제10권5호
    • /
    • pp.909-916
    • /
    • 2009
  • 본 연구는 위상천이 영사식 모아레 측정기의 기준 위상 측정단계에서 기준 위상의 검출 정확도를 높이기 위한 방안으로, 일반적인 N-bucket 방법이 아닌, 줄무늬 패턴 투사 영상의 직접적인 영상처리를 기반으로, 노이즈가 포함된 영상으로부터 기준 위상을 자동으로 검출하고 보정하는 방법을 다룬다. 일반적으로 기준위상을 정확히 구하기 위해서는 상대적으로 노이즈가 원천적으로 적은 고정밀도의 교정 시편과 이에 맞는 세분화된 교정방법이 필요하다. 하지만, 고가의 시편 제작비용 절감과 고정도 교정을 위한 교정시간의 단축을 위해, 상대적으로 일반 정밀도등급의 제작된 시편으로부터 획득된 영상을 이용하여, 효율적인 기준위상 교정 방법을 제안한다. 투사된 평행 라인 띠가 시편에서 반사되어 카메라로 입력되는 영상으로부터, 영상처리 라인마스크를 이용하여 격자 라인들의 중심점을 정밀하게 추출하고, 각 라인들에서 추출된 샘플링점 기반의 최소자승법을 이용하여, 라인 특징치인 기울기와 절편을 추출함으로써 실제 관측되는 격자 라인의 중심선을 획득하였으며, 획득된 중심선들을 이용하여 N-bucket 알고리즘에 적용할 수 있도록 위상을 추출한 후, 기준위상을 자동으로 생성하였다. 본 연구를 통하여 고가의 시편 제작 없이 빠르게 자동으로 기준위상을 추출할 수 있었다.

군사 동작 인식을 위한 IMU 기반 발목형 웨어러블 디바이스 개발 (Development of an IMU-based Wearable Ankle Device for Military Motion Recognition)

  • 장병준;조정훈;김도현;박경원
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.23-34
    • /
    • 2023
  • 군용 웨어러블 어플리케이션은 기존에는 상상할 수 없었던 개인 상태 점검 및 모니터링을 가능케 함으로써 큰 주목을 받고 있다. 그 중에서도 인간의 동작 상태를 인식하기 위한 기술은 개별 병력의 운용 현황 및 이동 상태를 즉각적으로 수집하여 능동적인 병력 관장을 허용한다는 점에서 그 필요성이 매우 높다. 본 논문에서는 군용 웨어러블 어플리케이션 연구의 일환으로 전투 상황 중의 군인이 어떤 환경에서 어떤 동작을 수행하고 있는지에 대한 정보를 취득하는 발목형 웨어러블 디바이스를 제안한다. 실제상황을 가정했을 때, 군인의 상지는 상황에 대한 변동성에 쉽게 노출되므로 지면과 상시 상호작용하고 있는 발목 부근에 측정 모듈을 부착한다. 측정 데이터는 각 동작 중의 3축 가속도 및 3축 각속도로 이들은 인간이 설정한 알고리즘으로는 해석이 불가능하다는 특징이 있다. 본 논문에서는 이러한 동적 데이터를 활용해 인간의 행동양식을 파악하기 위해 데이터의 이동 양상을 모델링하는 과정을 소개한다. 데이터로부터 추출되는 특징은 총 네 가지로 (최댓값, 최솟값, 평균, 표준편차) 딥러닝 모델의 인풋으로 활용돼 총 여덟 종류의 주요 군사 동작(Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, High Crawl)을 분류하는데 활용된다. 그 결과, 임의의 시험 상황에 대해 95.16%의 정확도로 군인의 이동 현황을 파악해낼 수 있었다. 본 연구는 웨어러블 기술 및 인공지능을 융합하여 군용 어플리케이션으로 확장될 동작 인식의 새로운 접근 방식을 제안했다는 점에서 의미가 크다.