• 제목/요약/키워드: 특징점 추출 알고리즘

검색결과 479건 처리시간 0.026초

헬스케어를 위한 영상기반 기절동작 인식시스템 개발 (Development of a Vision Based Fall Detection System For Healthcare)

  • 소인미;강선경;김영운;이지근;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권6호
    • /
    • pp.279-287
    • /
    • 2006
  • 이 논문은 스테레오 영상을 이용하여 응급상황을 인식하기 위하여 기절 동작을 인식하는 방법을 제안한다. 사람의 다양한 동작에서 학습과 인식에 필요한 영상 정보를 추출하기 위하여 3차원 정보를 사용하였고, 인식 알고리즘으로는 HMM을 이용하였다. 두 대의 카메라 영상에서 각각 배경을 생성한 다음에 배경 영상과 입력 영상의 차이를 이용하여 움직임 객체를 추출하였다. 그리고 움직임 객체를 포함하는 사각형을 생성한 다음 두 카메라의 캘리브레이션 정보를 이용하여 3차원 정보를 추출하였다. 3차원 공간상에서의 사각형의 너비와 높이의 변화량과 사각형 중심점 위치의 변화량 각각에 대하여 동작 인식률을 실험하였다. 실험 결과 너비와 높이의 특징 값을 이용하는 것보다 중심점의 3차원 위치 변화량을 이용하는 것이 높은 인식률을 보였다.

  • PDF

영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구 (Autonomous Battle Tank Detection and Aiming Point Search Using Imagery)

  • 김종환;정치정;허미라
    • 한국시뮬레이션학회논문지
    • /
    • 제27권2호
    • /
    • pp.1-10
    • /
    • 2018
  • 본 논문은 지상무인전투체계 중의 하나인 무인경전투차량이 RGB 영상정보를 기초로 스스로 전차를 탐지하고 조준점을 산출하는 지능형 표적획득/처리기술의 기초연구이다. 무인 경전투 차량이 전장에서 적 전차와 조우 시, 적 전차를 자율적으로 탐지하고 스스로 조준하는 방법을 개발하기 위해, 영상정보로부터 전차의 주요특징을 식별 및 추출하고, Maximally stable extremal regions, 중간값 필터, k평균 클러스터링 그리고 Morphological filtering의 영상처리기법 및 인공지능 알고리즘을 통해 전차의 외형정보를 추출 및 분석하였으며, 식별된 전차 외형정보를 벡터화하여 전차의 중앙을 지향하는 조준점을 산출하였다. 또한, 본 연구의 성능을 측정하기 위해 선진국들의 주력전차의 영상정보를 수집 및 분석하였고, 제안한 방법의 객관적인 전차탐지 성능은 정확도 91.6%, 정밀도 90.4%, 재현율 85.8% 그리고 F-measure 88.1%의 결과를 보여주었다. 본 연구가 무인전투체계의 지능형 표적획득/처리기술 연구개발에 도움이 되기를 기대한다.

다수의 평면을 가지는 모델기반 카메라 추적방법 (Camera Tracking Method based on Model with Multiple Planes)

  • 이인표;남보담;홍현기
    • 한국게임학회 논문지
    • /
    • 제11권4호
    • /
    • pp.143-149
    • /
    • 2011
  • 본 논문에서는 다수의 평면을 가지는 모델기반 카메라 추적 시스템이 제안된다. 상품의 정보를 표기하기 위한 2차원 바코드(barcode)로 널리 사용되는 QR(Quick Response) 코드를 인식하여 해당 물체의 3차원 모델을 임포팅한다. 그리고 관련 기하정보를 이용하여 모델의 주요 정점(vertex)을 추출하고 옵티컬 플로우(optical flow)를 이용하여 추적한다. 클리핑 알고리즘으로 다수의 평면을 가지는 물체의 평면 영역을 구별하고 매칭된 특징으로부터 호모그래피를 계산하여 초기 단계의 대략적인 카메라 움직임 파라미터를 추정한다. 이후 카메라의 움직임에 따라 다양한 평면에 존재하는 특징점과 해당 3차원 정보를 선형 방정식으로 구성하고 DLT(Direct Linear Transform) 방법을 적용한다. 최종 단계에서 번들 조정(Bundle Adjustment) 알고리즘을 이용해 카메라의 움직임 파라미터에 포함된 에러를 최소화 한다.

SURF(Speeded Up Robust Features)와 Kalman Filter를 이용한 컬러 객체 추적 속도 향상 방법 (Improvement Method of Tracking Speed for Color Object using Kalman Filter and SURF)

  • 이희재;이상국
    • 한국멀티미디어학회논문지
    • /
    • 제15권3호
    • /
    • pp.336-344
    • /
    • 2012
  • 객체 인식(recognition)과 추적(tracking)은 컴퓨터 비전의 중요 분야로써 작게는 동작 인식으로부터 크게는 우주 항공까지 그 활용 가능성이 무궁무진하다. 객체 인식의 정확도를 향상시키는 방법 중 하나는 회전, 스케일 그리고 가려짐에 강건한 컬러를 이용하는 것이다. 컬러를 이용함으로써 더 많은 특징점들을 추출하기 위한 계산 비용을 감소시킬 수 있다. 또한, 빠른 객체 인식을 위해 알고리즘의 정확도를 낮추는 것보다 객체의 위치를 예측하고 좀 더 작은 영역에서 인식을 수행하는 것이 더욱 효과적이다. 본 논문은, 인식 정확도를 향상시키기 위해 대표적인 객체 인식 알고리즘인 SURF와 컬러모델을 적용한 기술자(descriptor)를 사용하고, 움직임 예측 알고리즘인 Kalman filter를 결합하여 빠른 객체 추적 방법을 제안한다. 그 결과, 제안하는 방법은 다른 컬러를 갖는 같은 패턴의 객체들을 구분하고, 객체의 향후 움직임을 미리 예측한 관심영역(ROI)에서 인식을 수행함으로써 빠른 추적 결과를 보였다.

CCD-Camera를 이용한 목적대상의 3차원 위치좌표 추출 (Extraction of Object 3-Dimension Position Coordinates using CCD-Camera)

  • 김무현;이지현;김영희;박무훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.245-249
    • /
    • 2010
  • Stereo Vision System에서는 영상을 통해 특정 물체를 검색하고 검색된 물체 정보를 기반으로 Edge를 추출하고, 추출된 Edge를 이용하여 물체의 위치적 특징을 찾고 무인크레인이 이동해야할 위치좌표를 전달한다. 본 연구에서는 실제 산업현장에 가장 보편적인 형상인 Slab와 Coil을 기준으로 두 대의 CCD camera를 이용하여 물체의 형상을 인식하고, 무인크레인의 HookBlock부분이 물체의 중심점을 찾는 알고리즘을 개발하였다. 본 논문에서는 Stereo Vision System의 카메라 설치 위치에 따라 직교식과 수평식으로 2가지의 방식을 제안, 실험을 하였다. 본 연구에서 제안한 알고리즘은 무인 운반설비의 자동화 시스템 개발에 도움이 될 것으로 기대된다.

  • PDF

클러스터링 알고리즘기반의 COVID-19 상황인식 분석 (Analysis of COVID-19 Context-awareness based on Clustering Algorithm)

  • 이강환
    • 한국정보통신학회논문지
    • /
    • 제26권5호
    • /
    • pp.755-762
    • /
    • 2022
  • 본 논문에서는 학습 예측이 가능한 군집적 알고리즘으로 COVID-19에서 상황인식정보인 질병의 속성정보와 클러스터링를 이용한 군집적 알고리즘을 제안한다. 클러스터링 내에서 처리되는 군집 데이터는 신규 또는 새롭게 입력되는 정보가 상호관계를 예측하기 위해 분류 제공되는데, 이때 새롭게 입력되는 정보가 비교정보에서 오염된 정보로 처리되면 기존 분류된 군집으로부터 벗어나게 되어 군집성을 저하시키는 요인으로 작용하게 된다. 본 논문에서는 COVID-19에서의 질병속성 정보내 K-means알고리즘을 이용함에 있어 이러한 문제를 해결하기 위해 질병 상호관계 정보 추출이 가능한 사용자 군집 분석 방식을 제안하고자 한다. 제안하는 알고리즘은 자율적인 사용자 군집 특징의 상호관계를 분석학습하고 이를 통하여 사용자 질병속성간에 따른 클러스터를 구성해 사용자의 누적 정보로부터 클러스터의 중심점을 제공하게 된다. 논문에서 제안된 COVID-19의 다중질병 속성정보군집단위로 분류하고 학습하는 알고리즘은 적용한 모의실험 결과를 통해 사용자 관리 시스템의 예측정확도가 학습과정에서 향상됨을 보여주었다.

입체효과 최적화를 위한 사용자 보조 소프트 컴퓨팅 기법 (User Assistant Soft Computing Method for 3D Effect Optimization)

  • 최우경;김종수;하상형;김성현;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.419-422
    • /
    • 2004
  • 본 논문에서는 신경망 학습을 위한 데이터 획득시 생길 수 있는 오차를 줄이기 위해 획득 데이터에 대한 전처리 과정을 퍼지로써 구현하는 알고리즘을 제안하였다 신경망은 주어진 정보를 이용하여 학습을 가능하게 함으로써 시스템의 특징을 추출하는데 매우 우수한 능력을 발휘하고 있다 그러나 이는 학습에 사용하는 데이터에 오차가 포함되지 않는다는 점을 전제로 하고 있다. 그런데 데이터 획득과정이 인간의 주관적 판단에 의해 수작업으로 이루어지는 경우 학습 데이터는 오차가 존재할 수 있다. 학습 데이터의 오차를 줄이기 위해 조기에 획득된 데이터를 분석하고 추가적인 후보 데이터를 선정하여 데이터 획득 과정에서 큰 영향을 미치는 물체의 거리와 크기를 모두 고려할 수 있도록 퍼지 모델로써 구현하고자 한다.

  • PDF

특이점 추출을 통한 지형데이터의 빠른 삼각망 생성 (Fast Triangulation of Terrain Data through Unique Point Extraction)

  • 전경훈;구자영
    • 대한원격탐사학회지
    • /
    • 제19권6호
    • /
    • pp.457-464
    • /
    • 2003
  • 불규칙 삼각망은 대표적으로 사용되는 지형 모델링 방법 가운데 하나이다. 이 방법은 적은 데이터 량으로 지형의 특징을 잘 표현할 수 있고, 렌더링 시간을 단축시킬 수 있다. 본 논문에서는 능선 검출 알고리즘을 이용하여 지형데이터로부터 능선과 계곡을 검출하고, 이를 불규칙 삼각망의 구성을 위한 정점들의 집합으로 사용함으로써 기존 방식과 거의 동등한 오차수준에서 삼각망의 구성시간을 현저하게 단축시키는 방법을 제안하고 있다.

최적화된 확률 모델을 이용한 다양한 품질의 지문분류 (Various Quality Fingerprint Classification Using the Optimal Stochastic Models)

  • 정혜욱;이지형
    • 한국시뮬레이션학회논문지
    • /
    • 제19권1호
    • /
    • pp.143-151
    • /
    • 2010
  • 지문분류는 1:N 지문인식 시스템의 효율성을 높이는 단계로 지문의 매칭 시간 단축과 인식의 정확성을 높여주는 역할을 한다. 지문 각 클래스의 융선 패턴은 한 개 이상의 클래스와 중복되는 성질을 가지기 때문에 지문분류 작업은 어렵다. 또한 잡음을 많이 포함하거나 예외적인 입력 상태인 경우에도 분류 작업은 어려워진다. 본 논문에서는 다양한 품질의 지문을 효과적으로 분류하기 위해 지문의 방향특징을 이용해 확률 모델을 설계하고, 이를 최적화 하여 지문분류를 수행하는 방법을 제안하였다. 지문 융선을 픽셀단위로 탐색하여 방향 값을 산출하고, 산출된 방향 값을 일정 픽셀 단위로 병합하여 지문의 방향특징을 추출한다. 추출된 방향 특징을 이용해 확률론적 정보추출 및 인식 방식인 마코프 모델을 이용하여 지문의 클래스별 마코프 모델을 생성한다. 생성된 클래스별 마코프 모델의 상태전이 행렬을 분석하여 클래스별 분류 모델의 가중치 항목을 결정하고 유전자 알고리즘을 이용하여 지문분류 성능을 향상시킬 수 있는 최적의 수치를 찾아낸다. 유전알고리즘에 의해 최적화된 분류모델에 다양한 품질의 지문 데이터베이스를 적용하여 실험해 본 결과 최적화 되기 전의 분류 모델에 비해 우수한 분류성능을 보였다. 또한 실험에 사용한 다양한 품질의 데이터베이스를 분석해본 결과 제안한 방법은 특이점 유, 무 및 상태에 독립적으로 예외적인 입력상황의 지문에 대해 효율적으로 지분분류를 수행했다.

그림자 정보를 이용한 HSV 컬러 모델 기반의 전방 차량 검출 및 차선 정보 검출 (HSV Color Model Based Front Vehicle Extraction and Lane Detection using Shadow Information)

  • 한상훈;조형제
    • 한국멀티미디어학회논문지
    • /
    • 제5권2호
    • /
    • pp.176-190
    • /
    • 2002
  • 차량이 증가함에 따라 전방의 상황을 운전자에게 알려주기 위한 운전자 도움 시스템(Advanced Drivers Assistance System)과 같은 체계가 요구된다. 본 논문에서는 전방의 상황을 운전자에게 알려 주기 위한 기본과정으로 연속된 컬러 영상으로부터 영상처리만을 이용하여 전방의 차량과 차선을 검출하는 방법을 제안한다. 도로 전방의 상황은 차량이 많다고 하더라도 도로의 영역이 많은 부분을 차지하고 있으며, 차량이 있는 경우에 차량의 하단에 그림자와 같이 어두운 영역이 존재하는 점을 이용하여 전방의 차량을 검출한다. 그리고 차선은 그림자 영역의 반대 특징으로 횐색계열이라는 점을 이용하여 차선 정보를 추출한다. 이 방법은 도로가 혼잡하거나 도로상에 방향 표시가 있는 경우에도 좋은 결과를 보인다. 차량과 차선을 검출하는데는 HSV 컬러 모델에서 태도 성분과 명도 성분을 이용하여 후보점을 검출하고, 차량과 타선의 영역을 검출하며 에지 정보를 이용하여 차량의 영역을 결정한다. 그리고 검출된 차량 영역이 이전 프레임의 차량 영역과 같은 차량인지 알기 위해서는 HSV 성분과 위치 정보의 통계적 특징을 이용한다. 제안된 방식의 효과를 검증하기 위해 노트북 PC와 PC용 CCD 카메라로 도로에서의 영상을 촬영하고 차량 및 차선 검출 알고리즘을 적용한 처리 시간, 정확도 및 차량검지 결과를 보인다.

  • PDF