• Title/Summary/Keyword: 특징점 추출 알고리즘

Search Result 479, Processing Time 0.028 seconds

Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data (항공사진과 항공레이저 데이터를 이용한 건물 자동추출)

  • 조우석;이영진;좌윤석
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.307-317
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were 8.1cm, 24.7cm, 35.9cm, respectively.

The Development of Face Detection Algorithm using the Circular Projection (원형 투영을 이용한 얼굴 검출 알고리즘의 개발)

  • Jeong, Seok-Hoon;Joung, Lyang-Jae;Kim, Jang-Hui;Kang, Dae-Seong
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.229-232
    • /
    • 2005
  • 컴퓨터 비전을 기반으로 하는 인간과 컴퓨터의 상호작용(Human computer Interaction, HCI)에 대한 연구는 영상처리 분야에서 큰 축을 담당하고 있으며, 특히 얼굴인식 연구는 HCI 분야에서 가장 중요한 영역들 중의 분야이다. 이러한 얼굴인식 기반의 HCI 시스템을 구현하기 위해서는 영상 내에 존재하는 얼굴을 정확히 검증하는 것이 선행되어야 한다. 본 논문에서는 피부색상과 원형 투영 과정에 의한 특징 추출을 이용한 특징점 기반의 얼굴 검출 기법을 제안한다. 본 논문에서 제안하는 얼굴검출 기법은 얼굴의 크기 및 평면적 회전(rotation)에 대하여 강인한 얼굴검출 성능을 보여준다.

  • PDF

A Study on Facial Pose Estimation using TSL Color Information and Geometrical Structure (TSL 색상 정보와 기하학적 구조를 이용한 얼굴 포즈 추정에 관한 연구)

  • 김성환;채재영;김낙빈
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.285-289
    • /
    • 2003
  • 본 논문은 컬러 입력 영상에서 검출된 얼굴 영역 내의 홀(hole)들간의 기하학적 구조를 이용하여 포즈를 추정하는 방법을 제시한다. 얼굴 영역 검출에서는 특징값 기반의 알고리즘 중 피부색 분포를 이용하는 방법을 적용하며, 이 때 발생하는 조명에 의한 열화를 제거한다. 본 논문에서는 TSL 색상 모델을 사용하고, 조명에 의해 너무 밝게 표현되는 부분의 피부값을 조정함으로써 조명에 대한 보정을 실시한다. 그런 다음, 얼굴 영역 안에서 찾은 홀을 피부영역이 아닌 얼굴 구성요소(양눈, 입)로 가정하여, 후보 구성요소들의 기하학적 구조를 이용해 다양한 포즈의 입력 영상에 대한 포즈를 추정한다. 추정된 값은 향후 다양한 포즈에 대한 특징점 추출이나 얼굴 인식에 활용될 수 있다.

  • PDF

3-D Pose Estimation of an Elliptic Object Using Two Coplanar Points (두 개의 공면점을 활용한 타원물체의 3차원 위치 및 자세 추정)

  • Kim, Heon-Hui;Park, Kwang-Hyun;Ha, Yun-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.23-35
    • /
    • 2012
  • This paper presents a 3-D pose (position and orientation) estimation method for an elliptic object in 3-D space. It is difficult to resolve the problem of determining 3-D pose parameters with respect to an elliptic feature in 3-D space by interpretation of its projected feature onto an image plane. As an alternative, we propose a two points-based pose estimation algorithm to seek the 3-D information of an elliptic feature. The proposed algorithm determines a homogeneous transformation uniquely for a given correspondence set of an ellipse and two coplanar points that are defined on model and image plane, respectively. For each plane, two triangular features are extracted from an ellipse and two points based on the polarity in 2-D projection space. A planar homography is first estimated by the triangular feature correspondences, then decomposed into 3-D pose parameters. The proposed method is evaluated through a series of experiments for analyzing the errors of 3-D pose estimation and the sensitivity with respect to point locations.

Arrhythmia Classification based on Binary Coding using QRS Feature Variability (QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1947-1954
    • /
    • 2013
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.

Effective Image Clustering Using Shock Graphsm (쇼크 그래프를 이용한 효과적인 영상 군집화)

  • Jang, Seok-Woo;Khanam, Solima;Paik, Woo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.249-252
    • /
    • 2011
  • 본 논문에서는 쇼크(shock) 그래프 기반의 뼈대 특징을 이용하여 모양 정보를 분류하기 위해 그래프 편집 거리(edit cost) 기반의 k-means 군집화 알고리즘을 적용하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 질의 영상과 대상 데이터베이스 영상으로부터 뼈대 기반의 쇼크 그래프를 추출한 후 종점(end points)과 분기점(branch points)을 가중치를 이용하여 적응적으로 선택한다. 그런 다음, 두 영상 사이의 편집 거리를 구하여 이를 k-means 군집화 알고리즘의 거리 척도로 적용함으로써 대용량의 영상을 보다 효과적으로 분류한다. 성능을 평가하기 위해서 제안된 알고리즘을 MPEG-7 데이터베이스에 적용하였으며, 그 결과 제안된 영상 분류 방법이 기존의 영상 분류 방법에 비해서 보다 효과적으로 모양 기반의 영상을 분류하였음을 확인하였다.

  • PDF

Road Surface Classification Using Weight-Based Clustering Algorithm (가중치 기반 클러스터링 기술을 이용한 도로표면 유형 분류 알고리즘)

  • Kim, Hyungmin;Song, Joongseok;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.146-149
    • /
    • 2014
  • 최근 자동차 산업과 IT 기술의 융합이 활발해지면서 스마트카, 자율주행 자동차(무인 자동차)와 같은 지능형 자동차 개발이 활발히 진행되고 지능형 자동차의 비전 기반 기술개발도 활발히 진행되고 있다. 고속도로와 같이 포장된 도로나 자갈길과 같은 비포장 도로에서도 운전자의 승차감을 고려한 능동적 안전시스템과 안정적인 자율주행 자동차의 주행능력을 보장하는 기술들 중 도로 유형을 판단하는 것이 중요 요소 중 하나이다. 따라서 본 논문에서는 가중치 기반 클러스터링 기술을 이용하여 도로표면 유형을 분류하는 알고리즘을 제안한다. 아스팔트, 자갈길, 흙길, 눈길의 도로표면 영상 데이터를 히스토그램의 분포도와 최고점 위치, 에지 영상의 에지량, 채도성분을 이용하여 특징값을 추출하고 클러스터를 구성한다. 분류할 입력 도로표면 영상에 대해 특징값을 분석한 후 탐색범위 내 선택된 각 클러스터의 벡터와의 거리를 측정하여 가중치를 계산하고 가중치가 높은 클러스터를 분류하여 입력 영상에 대한 도로표면을 결정한다. 실험결과 제안하는 방법이 각 도로표면 영상의 특징값과 이를 이용한 가중치만을 이용하여 약 91.25%의 정확도로 도로의 표면을 분류해 내는 것을 볼 수 있었다.

  • PDF

Face Recognition using High-order Local Pattern Descriptor and DCT-based Illuminant Compensation (DCT 기반의 조명 보정과 고차 지역 패턴 서술자를 이용한 얼굴 인식)

  • Choi, Sung-Woo;Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • This paper presents a method of DCT-based illuminant compensation to enhance the accuracy of face recognition under an illuminant change. The basis of the proposed method is that the illuminant is generally located in low-frequency components in the DCT domain. Therefore, the effect of the illuminant can be compensated by controlling the low-frequency components. Moreover, a directional high-order local pattern descriptor is used to detect robust features in the case of face motion. Experiments confirm the performance of the proposed algorithm got up to 95% when tested using a real database.

Multi-sensor Image Registration Using Normalized Mutual Information and Gradient Orientation (정규 상호정보와 기울기 방향 정보를 이용한 다중센서 영상 정합 알고리즘)

  • Ju, Jae-Yong;Kim, Min-Jae;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.37-48
    • /
    • 2012
  • Image registration is a process to establish the spatial correspondence between the images of same scene, which are acquired at different view points, at different times, or by different sensors. In this paper, we propose an effective registration method for images acquired by multi-sensors, such as EO (electro-optic) and IR (infrared) sensors. Image registration is achieved by extracting features and finding the correspondence between features in each input images. In the recent research, the multi-sensor image registration method that finds corresponding features by exploiting NMI (Normalized Mutual Information) was proposed. Conventional NMI-based image registration methods assume that the statistical correlation between two images should be global, however images from EO and IR sensors often cannot satisfy this assumption. Therefore the registration performance of conventional method may not be sufficient for some practical applications because of the low accuracy of corresponding feature points. The proposed method improves the accuracy of corresponding feature points by combining the gradient orientation as spatial information along with NMI attributes and provides more accurate and robust registration performance. Representative experimental results prove the effectiveness of the proposed method.