• 제목/요약/키워드: 특징점 추출 및 정합 기법

검색결과 34건 처리시간 0.027초

모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합 (Multi-modality MEdical Image Registration based on Moment Information and Surface Distance)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권3_4호
    • /
    • pp.224-238
    • /
    • 2004
  • 다중 모달리티 영상정합은 서로 다른 성격의 두 영상의 중요정보를 결합하여 복합적 정보를 얻기 위해 널리 사용되는 영상처리 기법이다. 본 연구에서는 정합 대상 객체의 초기위치 및 방향에 종속적이지 않고, 낮은 정합오차 범위 내에서의 안정적인 정합을 지원하기 위하여 기존의 표면기반 정합 기법을 개선한 모멘트 정보 및 표면거리 기반의 정합 기법을 제시한다. 제안방법에서는 우선 정합대상객체의 표면 윤곽 점을 추출하고, 이를 기반으로 대상객체의 모멘트 정보를 추출하여, 표면거리 기반 상세 정합 이전에 모멘트 정보를 일치시키는 변환을 수행함으로써, 정합이전 대상객체의 위치 및 방향이 상이한 경우에 있어서도 정합이 안정적으로 수행되도록 한다. 또한 테스트 영상에 대한 표면 대표점 추출 시, 표면 코너추출법을 적용함으로써, 기존 표면 정보 기반 정합기법에서 일반적으로 사용하고 있는 무작위 샘플링 및 일정간격 샘플링에 의한 취약점을 보완한다. 본 논문에서 제안기법의 검증을 위하여 뇌 부위 자기공명단층영상(MRI)과 양자 방출 단층 촬영 영상(PET)을 적용하고, 정합오류율과 정합결과에 대한 2,3차원 가시화 영상의 육안평가를 통하여 정확성 및 안정성 측면을 검증한다.

고해상도 광학영상과 SAR 영상 간 정합 기법 (Registration Method between High Resolution Optical and SAR Images)

  • 전형주;김용일
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.739-747
    • /
    • 2018
  • 다중센서 위성영상 간 통합 분석 및 융합과 관련된 연구가 활발히 진행되고 있다. 이를 위해서는 다중센서 영상 간 정합이 선행되어야 한다. 대표적인 정합 기법으로는 SIFT (Scale Invariant Feature Transform)와 같은 알고리즘이 존재한다. 그러나, 광학영상과 SAR (Synthetic Aperture Radar)영상은 취득 시 센서 자세와 방사 특성의 상이함으로 영상 간 분광적인 특성이 비선형성을 이뤄 기존 기법을 적용하기에 어렵다. 이를 해결하기 위해, 본 연구에서는 특징기반 정합기법인 SAR-SIFT (Scale Invariant Feature Transform)와 형상 서술자 벡터 DLSS (Dense Local Self-Similarity)를 결합하여 개선된 영상 정합기법을 제안하였다. 본 실험 지역은 대전 일대에서 촬영된 KOMPSAT-2 영상과 Cosmo-SkyMed 영상을 이용하여 실험하였다. 제안 기법을 비교평가하기 위해 특징점 및 정합쌍 추출에 대해 대표적인 기존 기법인 SIFT와 SAR-SIFT를 이용하였다. 실험 결과를 통해 제안 기법은 기존 기법들과 다르게 두 실험 지역에서 참정합쌍을 추출하였다. 또한 추출된 정합쌍을 통한 정합 결과 정성적으로 우수하게 정합되었으며, 정량적으로도 두 실험 지역에서 각각 RMSE (Root Mean Square Error) 1.66 m, 2.65 m로 우수한 정합 결과를 보였다.

Modified SIFT와 블록프로세싱을 이용한 적외선과 광학 위성영상의 자동정합기법 (Automatic Registration Method for EO/IR Satellite Image Using Modified SIFT and Block-Processing)

  • 이강훈;최태선
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.174-181
    • /
    • 2011
  • 본 논문에서는 적외선 위성영상과 광학 위성영상을 위한 정합방법을 제안하였다. 적외선 영상은 물체에서 방사하는 열에너지를 측정한 것으로, 광학 영상과는 다른 정보를 보여주는 장점으로 많은 분야에 응용된다. 하지만 적외선 영상은 대비가 광학 영상에 비해 낮아, 영상 정합을 위한 특징점 추출 및 매칭을 하기가 어렵다. 이를 극복하기 위해, Modifed SIFT(Scale Invariant Feature Transform)를 사용하여 특징점을 추출 및 매칭하였다. 또한 특징점의 상대적 변별력을 증가시키기 위해, 영상을 블록화해서 Modified SIFT와 RANSAC (RANdom SAample Concensus)을 적용하였다. 마지막으로 오매칭이 있는 블록의 특징점을 제거하기 위해, 각 블록에서 추출된 특징점을 원 영상의 좌표계로 통합해 RANSAC을 다시 한 번 적용하였다. 실험에 사용된 적외선 영상의 파장대역은 3~5um이며, 실험결과 제안된 방법은 적외선과 광학 영상정합에 강인한 성능을 보였다.

적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법 (The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images)

  • 김재협;최봉준;천승우;이종민;문영식
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.43-52
    • /
    • 2014
  • 본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.

접합점 자동선정에 의한 항공삼각측량의 자동화 (Automation of Aerial Triangulation by Auto Dectection of Pass Points)

  • 유복모;김원대
    • 대한공간정보학회지
    • /
    • 제7권2호
    • /
    • pp.47-56
    • /
    • 1999
  • 본 연구에서는 사진측량 과정에서 항공삼각측량의 접합점 관측과정을 경계선 검색기법과 영상정합기법을 이용하여 특징점 추출, 영상의 정합 상좌표의 관측 과정을 자동화하였다. 본 연구를 통하여 기존에 수동적인 방법에 의하여 수행되어 오던 항공삼각측량의 접합점 선정 및 상좌표 관측 과정을 특징점 추출 및 좌우 동일점 탐색과정 수행에 의한 접합점 선정 및 관측 자동화 기법을 개발하였다. 자동화된 접합점 선정과정을 적응하여 산출된 결과물은 상좌표의 평균제곱근 오차가 $6.8{\mu}m$로서, 기존의 해석적 사진 측량방법이 작업자의 경력이나 기술 숙련도에 따라 편차가 발생하는 것에 비해, 균일한 성과를 산출할 수 있으며, 관측과정에서 소요되는 처리시간은 기존의 해석적인 방법에 비하여 61.2% 절감되어 경제적인 작업 처리가 가능하였다.

  • PDF

궤적 정합을 이용한 특징 기반의 차량 추적 시스템 (A Feature-based Vehicle Tracking System using Trajectory Matching)

  • 정영기;조태훈;호요성
    • 대한전자공학회논문지SP
    • /
    • 제38권6호
    • /
    • pp.648-656
    • /
    • 2001
  • 본 논문에서는 지능적인 교통감시를 위해 궤적 정합을 이용한 특징 기반의 새로운 차량 추적 시스템을 제안한다. 제안된 차량 추적 시스템의 전체적인 알고리즘은 특징 추출, 특징 추적 및 궤적 정합을 통한 그룹핑의 세 단계로 구성된다. 특징 추출 및 추적 단계에서는 입력된 영상에서 차량으로 추정할 수 있는 부속 정보를 추출하기 위해 꼭지점 추출 영상처리 기법을 적용하여 차량의 특징점으로 추출하고 선형 칼만 필터을 이용하여 특징들을 추적한다. 그룹핑 단계에서는 개별 차량에 소속된 특징점들을 하나의 그룹으로 분류한다. 이때, 특징 기반 추적방식의 문제점인 객체 중첩 문제를 해결하기 위해 특징들의 위치 정보와 궤적 정합을 이용한 새로운 그룹핑 방법을 제시한다 마지막으로, 차량들이 근접하거나 부분 겹침이 일어나는 경우의 교통영상에 적용하여 제안된 추적 시스템의 성능을 보인다.

  • PDF

증강현실 환경에서 복합특징 기반의 강인한 마커 검출 알고리즘 (A Robust Marker Detection Algorithm Using Hybrid Features in Augmented Reality)

  • 박규호;이행석;한규필
    • 정보처리학회논문지A
    • /
    • 제17A권4호
    • /
    • pp.189-196
    • /
    • 2010
  • 본 논문에서는 모서리점, 경계선 및 영역, 적응적 임계값 등과 같은 복합특징을 이용하여 증강현실 시스템에서 마커의 차단현상이 발생되거나 어두운 환경에서도 사용 가능하면서 정합 성능을 개선한 마커검출 알고리즘을 제안한다. 기존의 ARToolkit에서는 마커의 일부분이 사용자에 의해 가려지거나 주위 조명 변화에 의해 입력영상의 밝기 변화가 크게 될 경우, 마커를 추출할 수 없는 반면 제안한 마커추적 알고리즘에서는 마커영역 추출시 적응적 임계값 기법을 사용하여 조명의 변화에 둔감하게 반응하여 정확한 마커영역만을 분리 추출할 수 있다. 그리고 모서리 여부를 판단하고 모서리점이 가려진 경우, 추출된 직선의 교점으로부터 모서리점을 추출하므로 차단에 의해 마커가 가려졌을 때에도 정확한 마커 영역을 추출할 수 있다. 또한, 등록된 마커와의 정합시, 와핑에서 발생되는 마커의 크기 및 중심위치 변화를 보정하는 기법을 추가하여 정합 성능을 개선 시켰다. 실험 결과 제안한 알고리즘은 주위 조명 변화와 차단 현상에 강인하게 마커를 검출하였으며, 유사한 마커 태그를 구분 할 수 있는 정합 유사도가 종전보다 30% 증가한 것을 확인 할 수 있었다.

위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법 (Improving Matching Performance of SURF Using Color and Relative Position)

  • 이경승;김대훈;노승민;황인준
    • 한국항행학회논문지
    • /
    • 제16권2호
    • /
    • pp.394-400
    • /
    • 2012
  • SURF(Speeded Up Robust Features)는 다양한 상태 변화에 강인한 기술자 추출 방법으로 객체 인식과 같은 분야에서 유용하게 사용되는 알고리즘이다. 이 알고리즘은 대표적인 특징점 추출 알고리즘인 SIFT(Scale Invariant Feature Transform)와 비슷한 성능을 보이면서도 수행 시간이 훨씬 빠르다는 장점이 있다. 하지만 이러한 기술자들은 회전 불변한 특징 보장을 위해서, 추출한 특징점 간의 위치 정보를 고려하지 않는다. 또한, 원본 영상을 흑백 영상으로 변환하여 사용하기 때문에, 원본 이미지의 색상 정보도 이용하지 않는다. 본 논문에서는 특징점들 간의 상대적인 위치 정보 및 색상 정보를 이용하여 SURF 기술자의 정합 성능을 개선하는 방안을 제안한다. 상대적인 위치 정보는 특징점들의 중심을 연결하는 선분과 특징점 중심에서부터 생성되는 orientation 선분 사이의 각을 기반으로 한다. 색상 정보의 경우 각 특징점이 포함하고 있는 영역에 대해 color histogram을 생성하여 사용한다. 실험을 통하여 제안된 기법의 성능 개선을 보인다.

정규 상호정보와 기울기 방향 정보를 이용한 다중센서 영상 정합 알고리즘 (Multi-sensor Image Registration Using Normalized Mutual Information and Gradient Orientation)

  • 주재용;김민재;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.37-48
    • /
    • 2012
  • 영상정합은 동일한 장면에 대해서 서로 다른 시점, 서로 다른 시간 혹은 서로 다른 특성의 센서로부터 얻은 영상들의 위치 관계를 대응 시켜주는 기법이다. 본 논문에서는 가시광선 영상 및 적외선 영상과 같은 다중센서 영상을 정합하기 위한 방법을 제안한다. 영상정합은 두 영상에서 특징점을 추출하고, 특징점 간의 대응 관계를 구함으로써 이루어진다. 기존의 다중센서 영상 정합을 위한 방법으로 정규상호정보를 이용하여 대응 특징점을 선별하는 방법이 제안되었다. 정규상호정보 기반의 영상정합 기법은 두 영상의 통계적 상관성이 전역적이어야 한다는 가정을 전제한다. 그러나 가시광선 영상과 적외선 영상에서는 이를 보장하지 못하는 경우가 많아 대응 특징점의 정확도가 저하되기 때문에 기존의 방법은 안정적인 정합 성능을 기대하기 힘들다. 본 논문에서는 영상의 공간정보로서 기울기 방향정보를 정규상호정보와 결합함으로써, 대응 특징점의 정확도를 향상시켰으며 이를 통해 정확성 및 안정적인 영상 정합 결과를 도모하였다. 다양한 실험 결과를 통해 제안하는 방법의 효용성을 증명하였다.

달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험 (Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region)

  • 박재민;홍성철;신휴성
    • 대한토목학회논문집
    • /
    • 제42권5호
    • /
    • pp.741-749
    • /
    • 2022
  • 달 영구음영지역에 얼음 형태의 물이 발견되면서 주요 우주국들은 로버 중심의 현장 탐사를 준비 중이다. 달 영구음영지역은 극지역 크레이터의 중심부로 태양광이 직접 도달하지 않지만, 크레이터 벽면으로부터 반사되는 태양광으로 인해 일정 수준의 저조도 환경이 유지되는 것으로 예상된다. 본 연구에서는 달 영구음영지역의 조도와 지형환경을 모사한 실내 테스트베드를 구축하여 모의 지형영상을 촬영하였다. 모의 영상을 대상으로 저조도 영상강화 기법(CLAHE, Dehaze, RetinexNet, GLADNet)을 적용하여 밝기값과 색상복원 효과를 분석하였고, 특징점 추출 및 정합 기법(SIFT, SURF, ORB, AKAZE)의 성능 향상을 분석하였다. 실험 결과 GLADNet과 Dehaze 영상 순으로 저조도 환경에 강인한 시인성 개선 효과를 보여주었다. 반면 특징점 검출 및 정합 기법은 Dehaze와 GLADNet 영상 순으로 성능이 향상됨을 확인하였고, 특히 ORB와 AKAZE의 성능이 크게 개선되었다. 달 탐사에서 로버 탑재 카메라는 3차원 지형정보구축과 지질학적 조사에 활용된다. 따라서 GLADNet은 토양 성분과 암석 종류 판별에 유용하고, Dehaze는 로버의 주행과 함께 3차원 지형정보 구축에 적합할 것으로 판단된다.