• Title/Summary/Keyword: 특징융합

Search Result 1,499, Processing Time 0.025 seconds

A Relevance Feedback-based Image Retrieval Using Fusion of Features (특징 융합을 이용한 관련성 귀환 영상 검색)

  • 최치영;정성환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.240-244
    • /
    • 2003
  • 최근 디지털 영상 사용의 증가로 인해 자동적인 영상 색인과 검색에 관한 연구가 진행되고 있지만 일반 영상을 대상으로 하는 연구는 아직까지 만족스럽지 못한 실정이다 본 논문에서는 특징 융합을 이용한 관련성 귀환 영상 검색 시스템을 제안하였다. 본 시스템에서는 GLCM의 Contrast, Engergy 그리고 Entropy를 특징 값으로 사용하였고, 특징 융합과 관련성 귀환을 검색시스템에 적용하고 성능을 평가하였다. 7 가지 종류의 영상으로 구성된 실험 데이터베이스를 사용하여 실험 결과, 개별적 특징 값인 Energy 보다 융합 특징 값을 사용한 검색 결과가 무귀환에서 4%, 1차 귀환에서 4%의 Retrieval Precision이 증가함을 볼 수 있었다.

  • PDF

Combining Feature Fusion and Decision Fusion in Multimodal Biometric Authentication (다중 바이오 인증에서 특징 융합과 결정 융합의 결합)

  • Lee, Kyung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.5
    • /
    • pp.133-138
    • /
    • 2010
  • We present a new multimodal biometric authentication method, which performs both feature-level fusion and decision-level fusion. After generating support vector machines for new features made by integrating face and voice features, the final decision for authentication is made by integrating decisions of face SVM classifier, voice SVM classifier and integrated features SVM clssifier. We justify our proposal by comparing our method with traditional one by experiments with XM2VTS multimodal database. The experiments show that our multilevel fusion algorithm gives higher recognition rate than the existing schemes.

Object Detection Method with Non-local Feature Fusion (비지역적 특징 융합을 이용한 물체 검출 기법)

  • Choi, Jun Ho;Lee, Min Kyu;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.32-34
    • /
    • 2019
  • 최근 딥러닝 기반의 다양한 물체 검출 알고리즘이 제안되어 높은 성능을 보이고 있다. 본 논문은 이러한 딥러닝 기반 물체 검출의 성능을 향상시키기 위해 입력영상에서 추출된 특징 지도를 강화하는 비지역적 특징 융합과, 이를 이용한 물체 검출 기법을 제안한다. 제안 기법은 입력영상에서 CNN 을 통해 추출한 특징 지도를 비지역적 특징 강화 블록을 통해 강화한다. 해당 블록 내에서 입력된 특징 지도는 먼저 여러 리셉티브 필드를 갖는 특징 지도로 분기된다. 그리고 분기된 특징 지도들은 비지역적 특징 융합 모듈에 의해 융합되어 강화된다. 이러한 과정을 통해 강화된 특징 지도는 비지역적 문맥 정보가 강화된 특성을 가지며, 해당 특징 지도를 이용하여 최종적으로 물체 검출을 수행한다. Pascal VOC 공인 데이터세트를 통한 실험 결과, 제안 기법은 기존 비교 기법 대비 향상된 검출 성능을 보인다.

  • PDF

Using the fusion of spatial and temporal features for malicious video classification (공간과 시간적 특징 융합 기반 유해 비디오 분류에 관한 연구)

  • Jeon, Jae-Hyun;Kim, Se-Min;Han, Seung-Wan;Ro, Yong-Man
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.365-374
    • /
    • 2011
  • Recently, malicious video classification and filtering techniques are of practical interest as ones can easily access to malicious multimedia contents through the Internet, IPTV, online social network, and etc. Considerable research efforts have been made to developing malicious video classification and filtering systems. However, the malicious video classification and filtering is not still being from mature in terms of reliable classification/filtering performance. In particular, the most of conventional approaches have been limited to using only the spatial features (such as a ratio of skin regions and bag of visual words) for the purpose of malicious image classification. Hence, previous approaches have been restricted to achieving acceptable classification and filtering performance. In order to overcome the aforementioned limitation, we propose new malicious video classification framework that takes advantage of using both the spatial and temporal features that are readily extracted from a sequence of video frames. In particular, we develop the effective temporal features based on the motion periodicity feature and temporal correlation. In addition, to exploit the best data fusion approach aiming to combine the spatial and temporal features, the representative data fusion approaches are applied to the proposed framework. To demonstrate the effectiveness of our method, we collect 200 sexual intercourse videos and 200 non-sexual intercourse videos. Experimental results show that the proposed method increases 3.75% (from 92.25% to 96%) for classification of sexual intercourse video in terms of accuracy. Further, based on our experimental results, feature-level fusion approach (for fusing spatial and temporal features) is found to achieve the best classification accuracy.

Audio-Visual Integration based Multi-modal Speech Recognition System (오디오-비디오 정보 융합을 통한 멀티 모달 음성 인식 시스템)

  • Lee, Sahng-Woon;Lee, Yeon-Chul;Hong, Hun-Sop;Yun, Bo-Hyun;Han, Mun-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.707-710
    • /
    • 2002
  • 본 논문은 오디오와 비디오 정보의 융합을 통한 멀티 모달 음성 인식 시스템을 제안한다. 음성 특징 정보와 영상 정보 특징의 융합을 통하여 잡음이 많은 환경에서 효율적으로 사람의 음성을 인식하는 시스템을 제안한다. 음성 특징 정보는 멜 필터 캡스트럼 계수(Mel Frequency Cepstrum Coefficients: MFCC)를 사용하며, 영상 특징 정보는 주성분 분석을 통해 얻어진 특징 벡터를 사용한다. 또한, 영상 정보 자체의 인식률 향상을 위해 피부 색깔 모델과 얼굴의 형태 정보를 이용하여 얼굴 영역을 찾은 후 강력한 입술 영역 추출 방법을 통해 입술 영역을 검출한다. 음성-영상 융합은 변형된 시간 지연 신경 회로망을 사용하여 초기 융합을 통해 이루어진다. 실험을 통해 음성과 영상의 정보 융합이 음성 정보만을 사용한 것 보다 대략 5%-20%의 성능 향상을 보여주고 있다.

  • PDF

End-to-End Learning-based Spatial Scalable Image Compression with Multi-scale Feature Fusion Module (다중 스케일 특징 융합 모듈을 통한 종단 간 학습기반 공간적 스케일러블 영상 압축)

  • Shin Juyeon;Kang Jewon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.1-3
    • /
    • 2022
  • 최근 기존의 영상 압축 파이프라인 대신 신경망의 종단 간 학습을 통해 압축을 수행하는 알고리즘의 연구가 활발히 진행되고 있다. 본 논문은 종단 간 학습 기반 공간적 스케일러블 압축 기술을 제안한다. 보다 구체적으로 본 논문은 신경망의 각 계층에서 하위 계층의 학습된 특징 (feature)을 융합하여 상위 계층으로 전달하는 다중 스케일 특징 융합 (multi-scale feature fusion) 모듈을 도입해 상위 계층이 더욱 풍부한 특징 정보를 학습하고 계층 사이의 특징 중복성을 더욱 잘 제거할 수 있도록 한다. 기존 방법 대비 향상 계층(enhancement layer)에서 1.37%의 BD-rate가 향상된 결과를 볼 수 있다.

  • PDF

Voice Recognition Performance Improvement using the Convergence of Voice signal Feature and Silence Feature Normalization in Cepstrum Feature Distribution (음성 신호 특징과 셉스트럽 특징 분포에서 묵음 특징 정규화를 융합한 음성 인식 성능 향상)

  • Hwang, Jae-Cheon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.13-17
    • /
    • 2017
  • Existing Speech feature extracting method in speech Signal, there are incorrect recognition rates due to incorrect speech which is not clear threshold value. In this article, the modeling method for improving speech recognition performance that combines the feature extraction for speech and silence characteristics normalized to the non-speech. The proposed method is minimized the noise affect, and speech recognition model are convergence of speech signal feature extraction to each speech frame and the silence feature normalization. Also, this method create the original speech signal with energy spectrum similar to entropy, therefore speech noise effects are to receive less of the noise. the performance values are improved in signal to noise ration by the silence feature normalization. We fixed speech and non speech classification standard value in cepstrum For th Performance analysis of the method presented in this paper is showed by comparing the results with CHMM HMM, the recognition rate was improved 2.7%p in the speech dependent and advanced 0.7%p in the speech independent.

Performance Comparison of Triangular Feature Extraction Algorithm (삼각특징추출 알고리즘의 성능비교)

  • 서석배;김영호;김대진;강대성
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.73-76
    • /
    • 2000
  • 본 논문에서는 기존의 8개의 삼각형을 이용한 특징추출 알고리즘을 개선하여 8의 배수로 특징의 수를 증가시키는 알고리즘을 제안하고, 블록기반 특징추출의 알고리즘과 성능을 비교한다.

  • PDF

Fast Structure Recovery and Integration using Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 구조의 빠른 복원 및 융합)

  • Yoon, Jong-Hyun;Park, Jong-Seung;Lee, Sang-Rak;Noh, Sung-Ryul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.486-492
    • /
    • 2006
  • 본 논문에서는 비디오에서의 특징점 추적을 통해 얻은 2D 좌표를 이용한 3D 구조를 추정하는 방법과 네 점 이상의 공통점을 이용한 융합 방법을 제안한다. 영상의 각 프레임에서 공통되는 특징점을 이용하여 형상을 추정한다. 영상의 각 프레임에 대한 특징점의 추적은 Lucas-Kanade 방법을 사용하였다. 3D 좌표 추정 방법으로 개선된 직교분해기법을 사용하였다. 개선된 직교분해기법에서는 3D 좌표를 복원함과 동시에 카메라의 위치와 방향을 계산할 수 있다. 복원된 부분 데이터들은 전체를 이루는 일부분이므로, 융합을 통해 완성된 모습을 만들 수 있다. 복원된 부분 데이터들의 서로 다른 좌표계를 기준 좌표계로 변환함으로써 융합할 수 있다. 융합은 카메라의 모션에 해당하는 카메라의 위치와 방향에 의존된다. 융합 과정은 모두 선형으로 평균 0.5초 이하의 수행 속도를 보이며 융합의 오차는 평균 0.1cm 이하의 오차를 보였다.

  • PDF

Image Mosaicing Using Single View-Point Model (단일 뷰-포인트 모델을 이용한 영상 모자이킹)

  • 김효성;박진영;황수복;남기곤;정두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.237-240
    • /
    • 2001
  • 본 논문은 단일 뷰-포인트 카메라 모델을 이용하여 무-특징 환경 (non-feature environment)에서의 영상 모자이킹 알고리즘을 제안한다. 특징 환경에서 영상의 기하구조를 만들어 내고 이 기하구조를 무-특징 환경에 적용시켜 모자이크 영상을 얻는다.

  • PDF