본 논문에서는 연속된 프레임에서 특징점을 추출하고 특징점의 유사도를 Hough 공간에 누적하여 정확한 이동을 찾아내는 기법을 제시한다. 특징점은 예지의 시작점, 끝점, 분기점과 굴곡점을 사용한다. 정합을 위하여 특징점 주위의 평균 밝기, 굴곡점의 굴곡각을 이용하며, 물체 주위에 물체보다 특징이 강한 배경에 민감하지 않게 동작하기 위하여 Hough 공간상의 극대값들에 대하여, 분할 영역의 평균과 표준 편차를 비교함으로써 정확한 이동 경로를 산출한다. 제안하는 알고리즘을 실제 영상에 적응한 경우 배경의 특징이 매우 강한 경우 Hough 공간의 최대값을 찾는 기법이 해결할 수 없는 부분도 정확히 추적하는 결과를 보인다.
본 논문은 물 속 유충인 깔따구의 움직임을 관찰한 데이터에 Active Contour Model을 적용하여 깔따구 상태의 특징을 추출하는 방법을 제안한다. 1987년 소개된 Active Contour Model은 주어진 영상에 놓인 커브를 그 커브에 의해 분할된 영상의 에너지 값을 최소화하는 방향으로 진화하게 함으로써 영상 내 객체의 경계를 찾게 하는 영상분할 방법이다. Chan과 Vese에 의해 개선된 Model을 이용하여 다이아지논이 처리되기 전과 후의 깔따구 행동 패턴의 특징을 찾아낸다. 우선 깔따구의 움직임 궤적을 0.25초를 간격으로 관찰하여 구해진 속도벡터의 위상영상을 만든다.그리고 위상영상에 Active Contour를 두어 진화시키면서 시간에 따라 감소하는 에너지 값의 그래프에서 구해진 기울기로 깔따구 행동 패턴의 특징을 추출한다.
논문에서는 제스처 인식을 하기 위해 필요한 특징 값을 3차원 방향 코드로 구현한 특징 패턴을 검출하는 방법을 제안한다. 검출된 데이터 좌표끼리 직선을 만들고 직선들의 사이각의 합 연산을 이용해서 특징 변곡점을 추출한다. 추출된 변곡점끼리 직선을 생성한 후, 8방향 코드와 깊이 값을 병합시킨 24방향 코드를 맵핑 시켜준다. 맵핑된 방향 코드들을 한 패턴으로 생성한다. 생성된 패턴에서 인식에 불필요한 방향 노이즈를 제거하기 위해 특정 규칙을 적용한 필터링을 적용하여 필터링된 패턴을 추출하게 된다. '배너코드를 이용한 8방향 패턴'과 비교해서 더 효과적인 패턴이 추출됨을 확인하였다.
본 연구에서는 MR영상의 신호획득 기법 중 TE(Time of Echo)신호와 움직임에 의한 인공물을 줄이기 위하여 신호수신 시간을 짧게 하는 UTE(Ultra Time of Echo)기법으로 신호를 획득하여 TE신호와 UTE신호의 차이를 공학적 도구인 MatLab의 DWT(Discrete Wavelet Transform) ToolBox를 이용하여 프로그램밍을 하여 특징을 추출한 후 UTE 기법의 유용성을 평가하고자 하였다. 추출된 특징값을 이용하여 TE신호(T2) 특징값과 UTE신호 특징값을 비교한 결과 거의 일치함을 알 수 있었다.
본 논문에서는 내용기반 이미지 검색 시스템을 제작하기 위하여 필수적으로 선행되어야 하는 이미지의 영역구분에 대한 새로운 방법인 경계값을 이용한 영역추출 방법을 소개한다. 빠르고 정확한 이미지 검색엔진을 구현하기 위하여 질의의 결과가 될 이미지들은 전처리기에 의하여 모든 영역을 추출한 뒤 각각의 영역에 따른 특성(feature)를 저장하고 있어야 한다. 정확한 질의 결과를 얻기 위하여는 정확히 영역을 추출할 수 있고 그 특성도 추출할 수 있는 전처리기를 사용하여야 한다. 또한 정확도만을 중시하여 너무 복잡한 알고리즘을 사용한다면 그 또한 실용적이지 못하게 된다. 경계값을 이용한 영역추출 방법은 이미지의 각 점에 대한 경계값(edge value)을 이용하여 그 경계값이 작은 점으로부터 시작하여 경계값이 큰 점들을 병합해 가면서 인접한 영역간의 크기, 색상 등을 고려하여 각각의 영역을 구분해 낸다. 이 방법의 가장 큰 특징은 텍스쳐(texture)를 제외한 일반적인 영역뿐 아니라 텍스쳐 포함하는 영역도 추출할 수 있는 점과 빠른 처리 속도에 있다.
본 논문은 3차원 다각형 모델에서 특징 선을 추출하기 위한 방법에 대해 제안한다. 이산 곡면으로 이루어진 다각형 모델에서 특징 선을 추출하기 위하여 기존 방법에서는 전역적인 음함수 곡면 맞춤 기법(Implicit Surface Fitting)을 이용하여 모델의 꼭지점에서 곡률과 곡률 미분 값을 측정하였다. 이러한 방법은 다각형 모델의 꼭지점에서 음함수 곡면으로 정확하게 투영할 수 있도록 사용자의 정의 파라미타를 찾아야 하며, 특징 추출을 위한 많은 계산 시간을 요구한다. 그러나 제안 방법은 지역적 음함수 곡면 맞춤 기법을 이용하여 모델의 꼭지점에 근사된 곡면을 통해 미분 정보를 측정한다. 측정된 미분 정보를 통해 쉽게 각각의 모서리에서 제로-클로싱을 통해 특징 점을 추출하고, 곡률 방향을 따라 추출된 점들을 연결하여 특징 선을 생성한다. 여러 가지 다각형 모델에서 실험을 하였고 기존 방법보다 빠르며 높은 품질의 특징 선을 추출한다.
본 논문에서는, 영상 분류 문제에서 손실 값 계산 시 정답 부류를 제외한 나머지 부류에서 우세한 결괏값이 나오지 않도록 평활화하는 보조적인 손실함수를 고안한다. 합성곱 신경망 구조를 이용해 학습이 진행되면 손실함수가 작아지는 방향으로 가중치가 갱신되기 때문에, 정답을 제외한 나머지 부류들의 결괏값은 줄어든다. 하지만, 정답을 제외한 나머지 부류들 사이의 상대적인 값이 고려되지 않고 손실함수가 줄어들기 때문에 값들은 균일하지 않게 되고, 정답 부류와 유사한 특징을 가진 부류들의 값이 상대적으로 커지게 된다. 이는 정답 부류와 나머지 부류 중 가장 값이 큰 부류 사이에 공통의 특징을 공유한다고 생각할 수 있다. 정답 부류만이 가지고 있는 고유의 특징을 추출하지 못하고, 다른 부류도 가지고 있는 특징의 흔적이 남아있게 됨으로써 테스트 시 소스 도메인과 전혀 다른 도메인의 영상이 보일 때 그러한 특징이 부각 되어 부정확한 결과를 초래하게 된다. 본 논문에서는 단순한 손실함수의 추가로 도메인이 다른 환경에서 기존의 연구보다 좋은 분류 결과를 보여주는 것을 실험을 통해 확인하였다.
본 논문에서는 연속적인 제스처 영상으로 부터 주 인자 분석을 통해 얻어진 동작 특징 정보를 이용하여 제스처를 인식하는 방법에 대해 기술한다. 제안된 방법은 먼저, 인간의 신체 영상이 포함된 연속적인 입력영상에서 2차원 실루엣 제스처 영역을 분할한 다음 전역특징정보와 지역특징정보를 추출한다. 여기서 전역특징정보는 요인 분석을 통하여 제스처를 효과적으로 표현하는 의미 있는 소수의 핵심 특징을 선택하여 이용한다. 추출 된 특징정보로 부터 제스처의 시간 변화를 나타내는 특징히스토리정보를 얻어 저 차원 제스처공간을 구성한다. 마지막으로 제스처 공간상에 투영된 모델 특징 값은 은닉마르코프 모델의 입력 기호로 이용되기 위해 군집화 알고리즘을 통해 특정한 상태 기호로 구성되며 임의의 입력 동작은 확률 값이 가장 높은 해당 제스처 모델로 인식된다. 주 인자 분석으로부터 제스처에 기여도가 높은 특징인자로 모델을 구성하기 때문에 외관기반방법에서 몸의 형상 정보만을 특징 값으로 이용하거나 직관적인 방법으로 특징을 추출하는 방법보다 복잡한 동작에서 비교적 우수한 인식률을 나타낸다.
본 논문에서는 영상의 flexible subblock을 이용하여 영상내에 물체의 이동이나, 빛의 변화, 시각점(view-point)의 변화등에 덜 민감한 영상 검색을 방법을 제안한다. 특징 값으로는 Ohta 컬러 공간으로부터 1, 2, 3차 central 모멘트 값을 추출해 내고, 쌍직교 웨이블릿 변환을 통해 고주파 영역으로부터 수직-수평 방향 성분을 추출하여 인덱스화 시킴으로써 인덱스를 위한 저장 공간을 줄이고 계산 시간을 향상시킬 수 있었다. 아울러, 2개의 특징 값을 다단계(multi-step) K-NN 방법에 적용시킴으로서 사용자가 검색하고자 하는 가장 유사한 k 개의 영상만을 사용자에게 보여 주도록 설계하였다. 본 논문에서는 제안하는 알고리즘의 우수성을 증명하기 위해 RGB 색상 공간을 그대로 적용하여 실험한 결과를 비교해 보았다. 추가적으로, 영상의 전역적인 유사성뿐만 아니라, 각 블록의 독립적인 특징 값을 이용하여 특정 블록에 대한 검색 환경도 제공하여 보다 의미있는 검색 환경을 제공하고 있다.
본 논문에서는 Wavelet을 이용한 위장 영상의 질환 부위 특징을 추출하여 질환 부위 패턴을 인식할 수 있는 알고리즘을 제안하였다. 전처리 과정으로서 위장 영상이 형태정보는 입력 영상을 DWT(Discrete wavelet transform)에 의해 4레벨 DWT 계수 행렬을 구하고 계수 행렬의 특징에 따라 저주파 계수 행렬로부터 저주파 특징 파라미터 32개, 수평 고주파 계수 행렬로부터 수평 고주파 특징 파라미터 16개, 수직 고주파 계수 행렬로부터 수직 고주파 특징 파라미터 16개, 그리고, 대각 고주파 계수 행렬로부터 대각 고주파 특징 파라미터 32개 등 모두 96개의 특징 파라미터를 추출한 후 각각의 특징 파라미터를 최대 값+0.5로 최소 값을 -0.5로 정규화 하여 신경회로망의 입력 벡터로 사용하였다. 위장 영상 패턴 인식을 위한 신경회로망은 교사 학습을 요구하는 다층 구조의 오차 역전파(Error back propagation)알고리즘으로 하였고 구조적 특성을 이용하여 입력층, 중간층, 출력층의 계층 구조로 설계하였다. 설계된 신경회로망의 학습은 학습계수를 0.2로 모우멘텀을 0.6으로 설정하여 출력층 최대오차가 0.01보다 작을 때까지 수행하였으며 약 8000회 정도 학습한 결과 설정값 보다 작은 결과를 얻었고 질환의 종류나 위치, 크기에 관계없이 100%의 인식률을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.