• 제목/요약/키워드: 트로코이드

검색결과 28건 처리시간 0.035초

턴밀에서 트로코이드 치형 가공특성 평가에 관한 연구 (Study on the Evaluation of Machining Characteristics of Trochoidal Profile by Turn-Mill)

  • 이춘만;안종욱
    • 한국정밀공학회지
    • /
    • 제33권2호
    • /
    • pp.95-100
    • /
    • 2016
  • Various processes have been developed to improve the performance of the lubrication oil pump in a recent automobile industry. In particular, trochoidal profile has been widely used for the lubrication oil pump because it is easy to flow control and a lot of oil feed rate is obtained. Accuracy of the trochoidal profile as a core component of the lubricating oil pump affects the driving performance. So, it is necessary to develop efficient processing of the trochoidal profile. In this study, a machining process for the trochoidal profile is developed by turn-mill. Cutting force, surface roughness and tool wear were evaluated in accordance with machining conditions.

트로코이드 형상의 머리를 가진 봉의 압출/단조에 관한 UBET해석 (A UBET Analysis of the Extrusion/Forging Process of Trochoidally Headed Bars)

  • 김명훈;홍승진;김호윤;배원병
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.96-103
    • /
    • 1999
  • A kinematically admissible velocity field is derived to analyze the forming load and the extruded length in the extrusion/forging process of trochoidally headed bars from round billets. The forming load and the extruded length are obtained by minimizing the total energy-consumption rate. Experiments are carried out with lead billets at room temperature using trochoidally shaped punches. The theoretical predictions of forming load and extruded length are in good agreement with the experimental results.

  • PDF

트로코이드 기어의 단조 해석 (Analysis for forging of trochoidal gears)

  • 조해용;민규식;최종웅
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.77-83
    • /
    • 1996
  • This paper describes forging of trochoidal gears, which are being widely used in timing belt pulley, pump pulley etc., as a series of development of the simulator for non-axisymmetric elements. Kinematically admissible velocity fields for forging of trochoidal gear were proposed and the loads were calculated by numerical method. When the simulation was carried out, half pith of gear was divided into 6 deformation regions which have different velicity fields by assumptions and boundary conditions. The neutral surface was introduced into forging of trochoidal gears with flat punch and, for each step, it is assumed as a circle with its radius r$_{n}$. The experimental set-up was installed in 200 ton hydraulic press for forging. The billets, of A1 2218 aluminum alloy, were slightly phosphate-coated. It was shown that thd theoretical solutions, as upper bound, are useful to predict the forging load for forging of trochoidal gears, because thdt give estimates that are substantially higher than experimental loads.s.

  • PDF