• Title/Summary/Keyword: 트로글리타존

Search Result 4, Processing Time 0.016 seconds

Over-expression of PTEN Involved in Troglitazone-induced Apoptosis in Human Osteosarcoma Cells (사람골육종세포주의 트로글리타존 유도 세포사에서 PTEN의 역할)

  • Yoon, Sun-Jung;Zhou, Lu;Kim, Jung-Ryul
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.17 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • Purpose: We investigated the effects of phosphatase and tensin homologue deleted on chromosome 10 gene phosphatase and tensin homologue deleted on chromosome 10 gene (PTEN) expression on the cell proliferation and on the responsiveness of troglitazone in osteosarcoma cells. Materials and Methods: Western blotting alnalysis was performed to detect the expression of PTEN in U-2OS cells treated with troglitazone. WST (water-soluble tetrazolium) assay was used to evaluate cell proliferation. Flow cytometry was used to determine cell apoptosis. Further, transfection of wild-type PTEN plasmid DNA was used to upregulate PTEN expression. Results: Troglitazone treatment induced growth inhibition of U2-OS cells in a dose- and time-dependent manner. Troglitazone increased the expression of PTEN in a dose-dependent manner. PTEN upregulation induced by troglitazone treatment resulted in cell growth inhibition and apoptosis in U-2OS cells. PTEN over-expression by plasmid transfection enhanced these effects of troglitazone. Moreover, no changes were observed in the mutant type-PTEN group. Conclusion: Upregulation of PTEN is involved in the inhibition of cell growth and induction of cell apoptosis by troglitazone. Further, PTEN over-expression can cause cell growth inhibition in osteosarcoma cells and these cell growth inhibitions could be enhance by troglitazone treatment.

Clinical Use of Oral Hypoglycemic Agents (경구혈당강하제의 사용법)

  • Lee, Tai-Hee
    • The Journal of the Korean life insurance medical association
    • /
    • v.17
    • /
    • pp.21-30
    • /
    • 1998
  • 인슐린의존형당뇨병 환자의 혈당조절의 방법으로 먼저 식이요법과 운동이 권장되며, 이러한 방법으로 혈당조절이 만족스럽지 않을 때 경구혈당강하제를 사용하는 것은 혈당조절과 합병증 예방에 중요한 역할을 할 수 있다. 국내에서는 경구혈당강하제로 설폰요소제, 비구아나이드제인 메트포르민(metformin) 및 알파글루코시다제(${\alpha}$-glucosidase) 억제제인 아카보스(acarbose) 등이 사용되고 있다. 새로 개발중인 트로글리타존, 지방산 산화 억제제 등의 약제는 아직 임상에서 널리 사용되고 있지는 않다.

  • PDF

Methanol extract of Lespedeza maximowiczii var. tricolor Nakai improves glucose metabolism through PPARγ agonist and insulin-mimetic effect in 3T3-L1 adipocytes and db/db mice (삼색싸리 메탄올 추출물의 3T3-L1지방세포와 db/db 마우스에서의 PPARγ 작용제와 인슐린 유사효과를 통한 혈당조절 개선효과)

  • Park, Chul-Min;Kim, Hui;Rhyu, Dong-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.417-424
    • /
    • 2019
  • The aim of this study is to investigate the effect of Lespedeza maximowiczii var. tricolor Nakai (LMTN) on glucose metabolism. LMTN extract significantly enhanced the glucose uptake and lipid accumulation in 3T3-L1 adipocytes compared with control. Also, LMTN extract in 3T3-L1 adipocytes significantly increased the protein expression of peroxisome proliferator-activated receptor (PPAR)γ, insulin receptor substrate-1, and glucose transporter (GLUT)4. The regulatory effect on glucose uptake or insulin signal transduction of LMTM extract was lower than troglitazone or pinitol such as the positive control, but increased PPARγ activation. Additionally, LMTM extract has an insulin-mimetic effect. In db/db mice, LMTN extract (250 mg/kg BW) significantly reduced water and food intake, blood glucose, and level of plasma triglyceride and total cholesterol. Furthermore, the expression of PPARã and GLUT4 mRNA in adipose or muscle tissue effectively was increased by oral treatment of LMTN extract. Thus, our results suggest that LMTN extract improves the glucose metabolism through PPARγ and insulin-mimetic effect in 3T3-L1 adipocytes and db/db mice.

The Effect of Troglitazone on Thermal Sensitivity in Uterine Cervix Cancer Cells (자궁 경부암 세포에서 Troglitazone이 온열감수성에 미치는 영향)

  • Lee, Ji-Hye;Kim, Won-Dong;Yu, Jae-Ran;Park, Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.28 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • Purpose: Troglitazone (TRO), a PPAR-$\gamma$ agonist, can reduce heat shock protein (HSP) 70 and increase the antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, which might affect thermal sensitivity. Here, we investigated whether TRO modifies thermal sensitivity in uterine cervical cancer cells, which is most commonly treated by hyperthermia (HT). Materials and Methods: HeLa cells were treated with $5{\mu}M$ TRO for 24 hours before HT at $42^{\circ}C$ for 1 hour. Cell survival was analyzed by clonogenic assay. The expression of HSPs was analyzed by Western blot. SOD and catalase activity was measured and reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate and dihydroethidium. Results: The decreased cell survival by HT was increased by preincubation with TRO before HT. Expression of HSP 70 was increased by HT however, it was not decreased by preincubation with TRO before HT. The decreased Bcl-2 expression by HT was increased by preincubation with TRO. SOD and catalase activity was increased by 1.2 and 1.3 times,respectively with TRO. Increased ROS by HT was decreased by preincubation with TRO. Conclusion: TRO decreases thermal sensitivity through increased SOD and catalase activity, as well as scavenging ROS in HeLa cells.