• Title/Summary/Keyword: 트랙터

Search Result 430, Processing Time 0.028 seconds

Optimum Size Selection and Machinery Costs Analysis for Farm Machinery Systems - Programming for Personal Computer - (농기계(農機械) 투입모형(投入模型) 설정(設定) 및 기계이용(機械利用) 비용(費用) 분석연구(分析硏究) - PC용(用) 프로그램 개발(開發) -)

  • Lee, W.Y.;Kim, S.R.;Jung, D.H.;Chang, D.I.;Lee, D.H.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.4
    • /
    • pp.384-398
    • /
    • 1991
  • A computer program was developed to select the optimum size of farm machine and analyze its operation costs according to various farming conditions. It was written in FORTRAN 77 and BASIC languages and can be run on any personal computer having Korean Standard Complete Type and Korean Language Code. The program was developed as a user-friendly type so that users can carry out easily the costs analysis for the whole farm work or respective operation in rice production, and for plowing, rotarying and pest controlling in upland. The program can analyze simultaneously three different machines in plowing & rotarying and two machines in transplanting, pest controlling and harvesting operations. The input data are the sizes of arable lands, possible working days and number of laborers during the opimum working period, and custom rates varying depending on regions and individual farming conditions. We can find out the results such as the selected optimum combination farm machines, the overs and shorts of working days relative to the planned working period, capacities of the machines, break-even points by custom rate, fixed costs for a month, and utilization costs in a hectare.

  • PDF

Backward Path Tracking Control of a Trailer Type Robot Using a RCGS-Based Model (RCGA 기반의 모델을 이용한 트레일러형 로봇의 후방경로 추종제어)

  • Wi, Yong-Uk;Kim, Heon-Hui;Ha, Yun-Su;Jin, Gang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.717-722
    • /
    • 2001
  • This paper presents a methodology on the backward path tracking control of a trailer type robot which consists of two parts: a tractor and a trailer. It is difficult to control the motion of a trailer vehicle since its dynamics is non-holonomic. Therefore, in this paper, the modeling and parameter estimation of the system using a real-coded genetic algorithm(RCGA) is proposed and a backward path tracking control algorithm is then obtained based on the linearized model. Experimental results verify the effectiveness of the proposed method.

  • PDF

A Study on a New Working-system of Mechanical Land Clearing and Development of Fertle Soil. (기계개간의 새로운 작업체계와 숙지화 촉진에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2162-2176
    • /
    • 1971
  • From the ancient times our forefathers settled down in this peninsular and cultivated the hills and waste-lands into fields. Instead of fertilizing the lands they moved to find other fertile lands and lived a feudal life of agriculture and various machines played a main role in the land reclamation. The best method of land clearing, the time and efficiency in the operation and the effect of growing crops should sysematically analized prior to the time of 3rd Five-year Economic Development(1972-1976) in order to cultivated 210,000 ha of waste-land or the modernization of our country. The present study was investigated to find out a new working-system of mechanical land clearing and development of fertile soil. The results are as follows: 1) The land reclamation in natural slope is much more encourageable in land clearing and farming when the slope is below ten grades than bench terrace. 2) Weeds were mixed with soil in the land clearing work in order to supply organic materials and to make soil swollen instead of burning of just removing. 3) The equipments such as bulldozers, harrows, power tillers and so on should be prepared in order to do a systematic work in the land clearing. 4) The work of pulling-up roots is dependent upon the forms of roots spreading under the ground. The work of the pulling-up the straight roots was most difficult. 5) The land clearing work of the wrinkled style blocks was easy in pulling up roots and in the time of first plowing. The harrowing work could also be simply done. 6) The amount of soil carried was $240m^3/10a$, 15.6% increased amount from the standard block, while the required time of clearing work was 2 hours 15 minutes 45 seconds/10a, the one third of time required for the standard block. 7) The time disc harrowing work increased 50%, or 15 minutes/10a compared to the harrowing work required in the cultivated soil. 8) The time of rotary tilling increased 2.4 times or 1 hour 47 minutes 43 seconds/10a compared to the time required in the cultivated soil. 9) The reclamed land should be fertilized according to the soil quality, especially added fertilizer should be more than 1,200kg/10a, limes 20kg/10a. In order to produce added fertilizer grass fields should be needed. 10) The experiment of pasture growing is now progressing and therefore the effect of land clearing and the degree of developed soil will be investigated before long.

  • PDF

Effects of Delayed Harvesting of Miscanthus spp. Risen in the Previous Year on its Current Year'S Yield and Growth Characteristics (전년도 생육 억새의 늦은 수확이 당년 생육특성과 수량에 미치는 영향)

  • Moon, Youn-Ho;Lee, Ji-Eun;Yu, Gyeong-Dan;Cha, Young-Lok;An, Gi Hong;Ahn, Joung Woong;Song, Yeon-Sang;Lee, Kyeong-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.215-221
    • /
    • 2016
  • This study examined the effects of delayed harvest of Miscanthus on its biomass yield and growth characteristics. The trial was conducted at a 5-year-old demonstration field, using Miscanthus sacchariflorus cv. Geodae 1 and Miscanthus ${\times}$ giganteus. Harvesting was carried out using a mower, baler, and bale picker driven by a 5-ton tractor. Harvesting dates were the $1^{st}$, $10^{th}$, and $17^{th}$ of April, which respectively corresponded with the first, mid, and last emerging dates of new shoots. The sequential changes in stem number due to delayed harvesting were investigated on April $29^{th}$, May $27^{th}$, July $22^{nd}$, and October $30^{th}$, which corresponded to the juvenile, mid, luxuriant, and senescence stem stages, respectively. Soil penetration resistance, biomass yield, and growth characteristics were investigated on October $30^{th}$. There was no difference in soil penetration resistance at a depth of 10 cm, but it increased at a depth of 20 cm in proportion to the delayed harvesting time. The sequential change in stem number due to delayed harvesting was greater in M. sacchariflorus cv. Geodae 1 than in M. ${\times}$ giganteus. In M. sacchariflorus cv. Geodae 1, which was harvested on the last emerging date of new shoots, the stem number was $169/m^2$ in the mid stage but decreased to $70/m^2$ in the luxuriant stage. The diameter of newly developed rhizomes, stem height, and biomass yield decreased in the two Miscanthus species due to delayed harvesting. The ratio of Miscanthus headings, which is a critical characteristic for landscape use, also decreased due to delayed harvesting. Heading of M. sacchariflorus cv. Geodae 1 was not observed in plots harvested on the mid and last emerging dates of new shoots.

Forest Soil Characteristics and their Effects on the Trafficability of Logging Vehicles (산림토양(山林土壤) 특성(特性)이 집재차량(集材車輛)의 주행성(走行性)에 미치는 영향(影響))

  • Kim, Ki Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.255-265
    • /
    • 1999
  • This study deals with forest soil characteristics and their effects on the trafficability of logging vehicles. The study area is the national experimental forest located in Kwangnung. This site has 20m length and is equally divided by 5 surveying ranges with 4m width, on which a tractor(FIATAGRI) attached with logging boogie can drive in 4 driving types, namely 1time-return unload, 1time-return with load of 780-790kg weight of 3 logs, 5 and 10times-return with same load. After one driving type on all surveying ranges, the soil hardness is surveyed 5 times with 3 several type tools, SHM-1 type, lang penetrometer(L-PNTM), and clegg impact soil tester(CIST). A disturbed degree of cover vegetation and sliding conditions of vehicle are also observed. As results, the soil type of the test site was SC by USCS and dry brown forest soil. The cover vegetation is gotten trambled under driving after 3-5 times-return, shrubs leaves are fully fallen and their bark are peeled, and after 10 times-return the cover vegetations were nearly disappeared. The test vehicle has neither slided nor was overthrown. The wheel tracks in the 1-3 ranges, of which unit weight(gd, gt) is high and soil moisture content(MC) is low, were only 1-2cm deep, but those in the 4-5 ranges, of which the gd, gt is low and the MC is high, were 5-7cm deep. In the soil hardness test, which was established in 5 test ranges by types of driving, the more driving times, the higher the hardness. The soil hardness surveyed by L-PNTM has changed slowly and that surveyed by SHM-1 type has risen sharply. In the ranges with higher specific gravity(Gs), higher unit weight, lower MC and higher liquid limit(LL) and plasticity index(PI) was the soil hardness high and the trafficability was good. In the ranges with opposite conditions, also in the ranges of the lower soil hardness, the trafficability must be not good, because the wheel track may be deep. The results from CIST attached with 4kg hammer was not better than expected. So it is recommended to use CIST with 2.5kg or 0.5kg hammer.

  • PDF

Agricultural Geography of Rice Culture in California (미국 캘리포니아주(州)의 벼농사에 관한 농업지리학적 연구)

  • Lee, Jeon;Huh, Moo-Yul
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.51-67
    • /
    • 1996
  • There are three main rice-growing regions in the United States: the prairie region along the Mississippi River Valley in eastern Arkansas; the Gulf Coast prairie region in southwestern Louisiana and southeastern Texas; and the Central Valley of California. The Central Valley of California is producing about 23% of the US rice(Fig. 1). In California. most of the crop has been produced in the Colusa, Sutter, Butte, Glenn Counties of the Sacramento Valley since 1912, when rice was commercially grown for the first time in the state(Fig. 2). Roughly speaking, the average annual area sown to rice in California is about 300,000 acres to 400,000 acres during the last forty years(Fig. 3). California rice is grown under a Mediterranean climate characterized by warm, dry, clear days, and a long growing season favorable to high photosynthetic rates and high rice yields. The average rice yield per acre is probably higher in California than in any other rice-growing regions of the world(Fig. 4). A dependable supply of irrigation water must be available for a successful rice culture. Most of the irrigation water for California rice comes from the winter rain and snow-fed reservoir of the Sierra Nevada mountain ranges. Less than 10 percent of rice irrigation water is pumped from wells in areas where surface water is not sufficient. It is also essential to have good surface drainage if maximum yields are to be produced. Rice production in California is highly mechanized, requiring only about four hours of labor per acre. Mechanization of rice culture in California includes laser-leveler technology, large tractors, self-propelled combines for harvesting, and aircraft for seeding, pest control, and some fertilization. The principal varieties grown in California are medium-grain japonica types with origins from the cooler rice climates of the northern latitudes (Table 1). Long-grain varieties grown in the American South are not well adapted to California's cooler environment. Nearly all the rice grown recently in California are improved into semidwarf varieties. Choice of variety depends on environment, planting date, quality desired, marketing, and harvesting scheduling. The Rice Experiment Station at Biggs is owned, financed, and administered by the rice industry. The station was established in 1912, as a direct result of the foresight and effort of Charles Edward Chambliss of the United States Department of Agriculture. Now, The station's major effort is the development of improved rice varieties for California.

  • PDF

Compaction Characteristics of Multi-cropping Paddy Soils in South-eastern Part of Korea (우리나라 동남부 다모작 논토양의 경반화 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Ki-Do;Sonn, Yeon-Kyu;Park, Chang-Yeong;Hwang, Jae-Bog;Nam, Min-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.688-695
    • /
    • 2011
  • This study was carried out for some survey about soil compaction in the multi-cropping system of paddy field. Investigated sites were 90 farmer's fields in south-eastern part of Korea. The tillage practices season was different according to cropping system of paddy; in spring for mono rice cultivation and in autumn for the multi-cropping field. The average tillage depth in investigated sites was about 25 cm, however, it is different between the farmer's tillage practices and soil characteristics. It is high correlation to tillage deep and minimum resistance of penetration. The reaching soil deep to maximum resistance of penetration was about 27 cm, and average penetration resistance of the deep is 1.8~2.0 MPa for moderately fine-textured soils and more than 3.0 MPa for moderately coarse-textured soils. The difference of penetration resistance between cultivating and compacted layer was in order to sandy loam > clayey loam > clayey, and the difference was lesser in poorly drained soils than somewhat poorly ones. In the rice mono cropping field, the maximum resistance in no-tillage for 15 years was 1.18~1.25 Mpa at 20~25 cm in soil deep, however, the resistance of field with every year tillage practices was 2.03~2.21 Mpa. In the extremely compacted sandy loam textured soils, the penetration resistance at 30 cm in soil depth was drastically reduced by the subsoil from 5.2 Mpa to 3.2 Mpa, and the watermelon root in plastic film house was deep elongated.

Effect of Biomass and N Production by Cultivation Methods of Leguminous and Gramineae Green Manures on Rice Growth in Central Regions of Korea (중부지역 답리작에서 두과 및 화본과 녹비작물의 재배방법에 따른 biomass, 질소 함량이 벼 수량에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Kim, Min-Tae;Oh, In-Seok;Choi, Bong-Su;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.853-858
    • /
    • 2011
  • The cultivation methods are important for determining crop yield of green manure. The effect of cultivation methods of green manure crops (GMC) on biomass and rice yield was investigated. This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts from Oct. 2007 to Oct. 2008 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Seven GMC (hairy vetch, barley, Chinese milk vetch, rye, crimson clover, oats, rattail fescue) were cultivated and incorporated on paddy soil by broadcasting before rice harvesting (BBRH) and partial tillage seeding (PTS). Among the three leguminous GMC, the biomass and N production were the highest at the hairy vetch of PTS. Among the four gramineae GMC, the biomass and N production tended to be higher in the rye of BBRH and barley of PTS. The C/N ratio (56.5~74.2) of rye was high compared with hairy vetch (14.1). Among the GMC, the incorporation of hairy vetch increased $NH_4$-N contents in rice paddy soil at 14 and 42 days after transplanting. These results showed that hairy vetch had no significant to rice yield compared with conventional fertilization. Therefore, hairy vetch seems to be the most efficient green manure crop as an alternatives to chemical N fertilizer in the central regions of Korea.

CO2 Emission Analysis from Horticultural Facilities & Agricultural Machinery for Spread of New and Renewable Energy in Rural-type Green Village (농촌형 녹색마을에 신재생에너지 보급을 위한 시설재배 및 농업기계의 CO2 배출량 분석)

  • Kim, J.G.;Ryou, Y.S.;Kang, Y.K.;Kim, Y.H.;Jang, J.K.;Kim, H.T.;Seo, K.W.;Lee, S.K.;Cho, H.J.;Kang, J.W.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.86-92
    • /
    • 2011
  • In order to reduce dependence on the fossil fuels and $CO_2$ gas emission in farming activities, the government has pushed ahead with making the self-sufficiency of farming energy up 40% level in green villages. The objectives of this study are to survey the energy consumption of horticultural facilities or agricultural machineries, and to analyze the reduced $CO_2$ gas emission level from fossil fuel to bio-diesel fuel. For the implement of this study, it is necessary to analyze the energy consumption level in the various sector of farming activities, and available renewable energy sources should be selected. Annual total $CO_2$ gas emission in the tillage farming sector was analyzed as $5,667,258\;t-CO_2$ and that in the horticultural facilities occupied $4,932,607\;t-CO_2$, while the $CO_2$ gas emission level of diesel fuel was $3,105,707\;t-CO_2$, and that of the heavy oil showed $1,370,578\;t-CO_2$. The average $CO_2$ gas emission level of horticultural facilities in the country was analyzed as $29,418\;t-CO_2/ha$. Among the total energy consumption of agricultural machineries, tractor used 284,763kL, power tiller spent 221,314 kL, grain drier consumed 145,524kL and combine tractor expend 72,537kL. From the comparison of $CO_2$ gas emission level between fossil fuel and bio-diesel fuel for the horticultural facilities or agricultural machinery in G-City, Jeonbuk Province, the $CO_2$ gas emission level can be reduced by 7% through replacing the fuel from fossil to biodiesel.

Project of Improving Good Agriculture Practice and Income by Intergrated Agricultural Farming (미얀마 우수농산물 재배기술 전수사업)

  • Lee, Young-Cheul;Choi, Dong-Yong
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.193-206
    • /
    • 2014
  • The objectives of the project are to increase farmers' income through GAP and to reduce the loss of agricultural produce, for which the Korean partner takes a role of transferring needed technologies to the project site. To accomplish the project plan, it is set to implement the project with six components: construction of buildings, installation of agricultural facilities, establishment of demonstration farms, dispatching experts, conducting training program in Korea and provision of equipments. The Project Management Committee and the Project Implementation Team are consisted of Korean experts and senior officials from Department of Agriculture, Myanmar that managed the project systematically to ensure the success of the project. The process of the project are; the ceremony of laying the foundation and commencing the construction of training center in April, 2012. The Ribbon Cutting Ceremony for the completion of GAP Training Center was successfully held under PMC (MOAI, GAPI/ARDC) arrangement in SAl, Naypyitaw on June 17, 2012. The Chairman of GAPI, Dr. Sang Mu Lee, Director General U Kyaw Win of DOA, officials and staff members from Korea and Myanmar, teachers and students from SAl attended the ceremony. The team carried out an inspection and fixing donors' plates on donated project machineries, agro-equipments, vehicles, computers and printer, furniture, tools and so forth. Demonstration farm for paddy rice, fruits and vegetables was laid out in April, 2012. Twenty nine Korean rice varieties and many Korean vegetable varieties were introduced into GAP Project farm to check the suitability of the varieties under Myanmar growing conditions. Paddy was cultivated three times in DAR and twice in SAl. In June 2012, vinyl houses were started to be constructed for raising seedlings and finished in December 2012. Fruit orchard for mango, longan and dragon fruit was established in June, 2012. Vegetables were grown until successful harvest and the harvested produce was used for panel testing and distribution in January 2013. Machineries for postharvest handling systems were imported in November 2012. Setting the washing line for vegetables were finished and the system as run for testing in June 2013. New water tanks, pine lines, pump house and electricity were set up in October 2013.