• Title/Summary/Keyword: 투습계수

Search Result 17, Processing Time 0.035 seconds

The estimation on the insulation performance of thermal insulation materials according to water vapor permeance (투습성에 따른 단열재의 단열성능평가 및 고찰)

  • Kim, Seok-Hyun;Park, Jong-Il;Lee, Min-Woo;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1012-1018
    • /
    • 2006
  • In this study, the insulation performance of thermal insulation materials such as glass wool, polyetylene and flexible lastomeric foam according to water vapor permeance was estimated by using experimental correlation equation. The results showed the conductivity increment of flexible lastomeric foam which has very low-permeability (${\le}0.15[ng/{\cdot}s{\cdot}Pa]\;or\;{\mu}{\ge}1,000$) is about 50% lower than that of glass wool with the lapse of ten years. The conclusion is that moisture inevitably accumulated in permeable Insulations reduces insulation performance and also accelerates surface condensation in the case of cold water system.

  • PDF

Water-Vapor Transfer Characteristics of Carrageenan-Based Edible Film (카라기난 필름의 투습 특성)

  • Rhim, Jong-Whan;Hwang, Keum-Taek;Park, Hyun-Jin;Jung, Soon-Teck
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.545-551
    • /
    • 1996
  • Water-vapor transmission rate and water-vapor permeability of carrageenan-based edible film with three different thicknesses of 0.05, 0.08 and 0.11 mm were measured to investigate the potential applicability of the films to powder foods at five different temperatures (20, 25, 30. 35 and $4^{\circ}C$) and three different relative humidities (50. 70 and 90% RH). Water-vapor transmission rate of the carrageenan-based film was gound to be 2.3 times higher than that of polyethylene (PE) film and water-vapor permeability of the film was 45-230 times higher than that of PE film. Water-ydpor permeability of the film seemed to increase linearly with the film thicknees like other hydrophilic edible films. Water-vapor transmission rate were found to be dependent on the temperature. Activation energies of the water-vapor transmission rate of the film were found to be between 7.898 and 12.8702 kj/mol depending on the film thickness. The water-vapor transmission rate of the film showed the typical kinetic compensation effect between activation energies and preexponential factors. which was proved by the linear increase in the value of logarithms of preecponential factor.

  • PDF

Physicochemical Properties of Soy Protein Isolate Films Laminated with Corn Zein or Wheat Gluten (대두분리단백 필름(soy protein isolate)에 옥수수 단백(zein)과 밀 단백(gluten)을 각각 적층하여 제조한 필름의 이화학적 성질)

  • Lee, Myoung-Suk;Ma, Yu-Hyung;Park, Sang-Kyu;Bae, Dong-Ho;Ha, Sang-Do;Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.142-146
    • /
    • 2005
  • Soy protein isolate (SPI) film was laminated with corn zein or wheat gluten to improve functional properties. Both SPI/corn zein-laminated film (Film B) and SPI/wheat gluten-laminated film (Film C) showed increased tensile strength by 150%, compared to control (Film A). Film C showed significant 253% increase in percentage elongation. Water vapor permeability (WVP) of Films B and C decreased slightly compared to Film A. Solubility values of Films B and C were lower than that of Film A. Hunter color values of Films A and C were not significantly different, while Film B showed yellowness due to presence of corn zein. These results suggest SPI/wheat gluten-laminated film is suitable as packaging material.

Analysis of Water-Vapor Permeance and Ventilation Property of the Porous Construction Materials (다공성 건축자재의 투습 및 통기성 분석에 대한 연구)

  • Kim, Jong-Won;Ahn, Young-Chull
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.754-757
    • /
    • 2008
  • To maintain the indoor air quality, many ventilation systems and technologies have been developed in the highly insulated and air tight buildings. In this study, a porous construction material, which is applicable to passive ventilation system, is developed and measured the performances of the permeability and the resistance of water vapor, and the dust collection efficiency. The average coefficient of water vapor permeability shows $3.6\;g/m^2{\cdot}h{\cdot}mmHg$, which is slightly higher than Hanji ($2.4{\sim}3.2\;g/m^2{\cdot}h{\cdot}mmHg$) and the average water vapor resistance factor shows $0.303\;g/m^2{\cdot}h{\cdot}mmHg/g$, which is slightly smaller than Hanji($0.309{\sim}0.315\;g/m^2{\cdot}h{\cdot}mmHg/g$). The pressure drop of the porous construction material is smaller than the HEPA filter and the minimum dust collection efficiency shows 82.8% in the range of $2{\sim}9\;cm/s$.

  • PDF

Effect of Water Resistance and Physical Properties of Soy Protein Isolate coated Liner Board (대두단백 코팅 종이의 수분저항성 및 물리적 성질)

  • Ha, Sang-Hyung;Park, Cheon-Seok;Kim, Byung-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1251-1255
    • /
    • 2006
  • To improve the water resistance and physical properties of soy protein isolate (SPI)-coated paper, effects of concentrations of soy protein isolate and plasticizer were examined. Physical properties such as elongation strength (ES), elongation rate (E), water vapor permeability (WVP), and water solubility (WS) were evaluated. The film made from 5% soy protein isolate (SPI) and 40% glycerol (plasticizer) suggested a good application for a film preparation. SPI coated paper showed the highest ES (21.62 MPa) and the lowest WVP $(2.06ng{\cdot}m/m^2{\cdot}s{\cdot}Pa)$ and WS (1.17%). This study suggested that soy protein isolate (SPI) can be used as a coating material for the coated paper to improve the water resistance.

유연 OLED디스플레이 구현을 위한 박막 봉지 기술

  • Han, Ju-Hwan;Lee, Seong-Hyeon;Park, Jin-Seong
    • Information Display
    • /
    • v.20 no.3
    • /
    • pp.48-56
    • /
    • 2019
  • 유연 OLED 디스플레이 구현을 위한 박막 봉지 기술에 대해 두 가지 관점으로 살펴보았다. 첫 번째 다층 구조를 통한 박막 봉지 특성 개선에 대한 연구는 현재까지 다양한 연구들이 진행되어 왔으며 활발히 진행 중이다. 특히 우수한 투습 방지 특성을 가지며 동시에 기계적 내구성을 잃지 않기 위해 유 무기 적층구조는 중요한 연구 주제였다. 유기물 층은 다양한 소재, 증착 방법들이 연구되었으며 무기물 층은 ?고 좋은 특성을 가지기 위해 원자층 증착법을 활용하는 것이 중요하다. 특히 원자층 증착법이 대면적 증착이 가능하며, 균일도가 높다는 점에서 향후 양산에서도 활용이 가능하다는 점에서 원자층 증착법과 분자층 증착법을 통한 유 무기 적층 구조 연구가 중요하다고 할 수 있다. 또한 막에 구조적인 변화를 주어 가해자는 응력을 최소화하는 방법을 소개하였다. 이론적으로 전체막에서 외부 응력이 가해지더라도 받는 응력이 0이 되는 중립면을 활용하면 큰 외부 응력이 막에 가해지더라도 열화가 확연히 줄어든 연구 결과들이 있었다. 결론적으로 유연 OLED 디스플레이 구현하기 위해 박막 봉지 측면에서 이루어 져야 할 연구의 방향은 소재적으로 유 무기 적층 구조를 통한 막 내구성 및 투습 방지 특성 확보가 중요하고 구조적으로는 OLED 패널 제작 시 박막 봉지 층 이외에 상부 추가되는 막의 두께와 탄성 계수를 조절하여 기계적 내구성이 낮은 백플레인 부분과 박막 봉지 부분을 중립면에 위치시켜 외부 응력으로부터 자유로워 지도록 하는 방향으로 진행될 것으로 예상된다.

Distribution of Moisture Content in Wood with Vapor Transmission Conditions (투습조건에 따른 목재내 함수율분포)

  • Lee, Weon-Hee;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.3-9
    • /
    • 2000
  • This study concerns the distribution and dependence of moisture content(MC) in wood for same thickness in different vapor transmission conditions. The specimens were disks of 70-mm in diameter and 20-mm in thickness from quartersawn lumber of Korean red pine(Pinus densiflora S. et Z.). The experiments were conducted in ten different conditions on the difference of the vapor pressures by the JIS Z-0208. The distribution of moisture content in wood can be illustrated by two straight lines intersecting at the point of about ten percent Me. On the other hand, when more or less than about 10 percent, the distribution of the Me can be illustrated by one straight lines. Therefore, it is considered that the values of 10 percent Me has no relation to the wood and experimental conditions. It's assumed that 10 percent is the boundary point at which the moisture sorption energy changes. In a previous study, diffusion coefficient is almost constant with no relation to a thickness of the woods for the constant experimental conditions. But, in this study, it seems that diffusion coefficient from the moisture gradient vary with the Me of wood in different vapor transmission conditions.

  • PDF

Moisture Transfer and Velocity of Moisture Transmission by Wood in Steady State (정상상태(定常狀態)에 있어서 목재(木材)의 습기전달(濕氣傳達)과 투습속도(透濕速度))

  • Lee, Weon Hee
    • Current Research on Agriculture and Life Sciences
    • /
    • v.10
    • /
    • pp.41-47
    • /
    • 1992
  • In general, the behavior of moisture transmission is estimated by vapor permeability or vapor transmission resistance, but its values obtained by experiments do not have great adaptability for practical situations because of changes in the experimental conditions. This fact is why only theoretical discussions have advanced. Thus, the fundamental study of the moisture transmission phenomenon has been treated lightly. Here, as the first step toward the basic research of moisture transmission, the amount of moisture transmission and the moisture distribution in specimens were investigated. The experiment was conducted in a steady state, and the moisture distribution was measured by slicing and weighing the specimens. From the examination of the vapor transmission resistance, the phenomenon of moisture transmission was dealt with devide the moisture transfer on the wood surface and moisture diffusion in wood. The following results were obtained. 1) The phenomenon of moisture transmission should be approached by its division into moisture transfer on the wood surface and moisture diffusion in the wood because the positive values of vapor transmission resistance exist in the extrapolation of thickness 0mm. 2) The distribution of moisture in wood can be illustrated by two straight lines intersecting at the point of nine percent moisture content : namely, diffusion coefficients have two constant values at moisture contents below and above nine percent. The shape of the distribution curve of moisture content is similar irrespective of the wood thickness. On the other hand, when the moisture contents on both sides was more than nine percent, the distribution of the moisture content could be illustrated by one straight lines. 3) The amount of moisture movement is determined by the moisture gradient in wood. 4) Coefficients of the moisture transfer depend on the thickness of the specimens.

  • PDF

Improvement of Water Resistant Properties of a Linerboard for Corrugated Fiberboard Box by Coating with Na-alginate (알긴산 코팅에 의한 골판지 상자 제조용 라이너 원지의 수분저항성 증진)

  • Kim, Eun-Jung;Rhim, Jong-Whan;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.762-766
    • /
    • 2006
  • To improve water resistance of paperboard used to manufacture the corrugated boxes, effect of surface coating of the liner- board with Na-alginate was investigated by determining the optimum processing conditions such as a optimum alginate concentration for surface coating, plasticizer content, concentration of divalent cations their immersion times, For the surface coating of the liner-board, 2.5% Na-alginate solution was found to be the optimum concentration, and the concentration of glycerol used as plasticizer was effective when 35% alginate concentration was use was Used Immersion of the alginate coated paperboard for 3 min in a $CaCl_2$ solution improved the water resistance properties. As a divalent cation for the insolubilization of the alginate films, $Cu^{2+}$ was found to be as effective as $Ca^{2+}$. Among the platicizers tested, sorbitol was the most effective in reducing water vapor permeability and water solubility of alginate coated paperboard.

Preparation of Gelatin Film Containing Grapefruit Seed Extract and Its Antimicrobial Effect (자몽종자 추출물을 함유한 Gelatin Film의 항균 효과)

  • Lim, Geum-Ok;Hong, Youn-Hee;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.16 no.1
    • /
    • pp.134-137
    • /
    • 2009
  • The gelatin film containing grapefruit seed extract (GSE) was prepared by incorporating different amounts (0, 0.02, 0.05, 0.08, 0.1%) of GSE into the film. The tensile strength (TS) of the film increased by the addition of GSE, and water vapor permeability (WVP) of the film decreased. In particular, the gelatin film containing 0.1% GSE had a TS of 10.28 MPa, while the control had 8.68 MPa. WVP of the film containing 0.1% GSE decreased to 2.18 ng m/m2 s Pa, compared to 2.48 ng $m/m^{2}s$ Pa of the control. In addition, incorporation of 0.1% GSE to the gelatin film decreased the populations of Escherichia coli O157:H7 and Listeria monocytogenes by 2.67 and 3.15 log CFU/g, respectively, compared to the control. These results suggest that as a packaging material, gelatin film containing GSE can have antimicrobial activity against pathogenic microorganisms in foods.