• Title/Summary/Keyword: 투수층 지반

Search Result 120, Processing Time 0.021 seconds

Evaluation of Hydraulic Conductivity of Slurry-wall-type Vertical Cutoff Wall with Consideration of Filter Cake (필터케이크(filter cake)를 고려한 슬러리월 연직차수벽의 현장투수계수 평가)

  • Nguyen, The Bao;Lee, Chul-Ho;Choi, Hang-Seok;Kim, Sang-Gyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.121-131
    • /
    • 2008
  • In constructing a slurry trench cutoff wall, bentonite-water slurry is used to secure the stability of sidewalls during excavation before the wall is completed by backfilling. Unexpectedly, a thin but relatively impermeable layer called filter cake can be formed on the excavation surface, which significantly influences the result of slug test analysis in the cutoff wall if not considered. This study is to examine the effect of filter cake on evaluating hydraulic conductivity of the vertical cutoff wall through slug test analysis with the aid of the verified numerical program Slug_3D. The no-flux boundary conditions were adopted in Slug_3D to simulate the filter cake on the interface between the wall and the natural soil. A new set of type curves were built for applying the type curve method. New modification factors were obtained for using the modified line-fitting method. With consideration of filter cake, the type curve method and the modified line-fitting method were adopted to reanalyze the case study taken from EMCON (1995). The previous results achieved by Choi and Daniel (2006) without consideration of filter cake were compared with the present results obtained in this paper. The comparison emphasizes the necessity of considering filter cake when analyzing slug test results in vertical cutoff walls.

An Engineering Characteristics of Weathered Granite Soil-Bentonite Mixtures (화강풍화토-벤토나이트 혼합토의 공학적 특성)

  • Kim, Daeman;Kim, Kiyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.45-56
    • /
    • 2006
  • Recently, the more potential waste sites are being required as increasing the demand of better human life. But the construction of waste disposals has many restrictions because of lack of good quality clay and high cost of liners. So, in this study, we studied the liner materials to develop more cheaper soil liner that can be satisfied the environmental criterion for the coefficient of permeability and shear strength. A series of compaction test and triaxial (consolidation, permeability, and shear) tests were performed to obtain the optimized weight ratio of Bentonite-Soil mixture (B/S) including the least amount of bentonite. A series of soil tests were performed to acquire the appropriate weathered granite soil-bentonite mixture that is satisfied the environmental criterion of soil liner($k=1{\times}10^{-7}cm/sec$). At first, weathered granite soils were classified with four different particle-size soils, and B/S ratio was increased as 5% step for each particle-size. The test results showed that in case of weathered granite soil passing through No. 100 sieve, B/S=15% satisfied the soil liner criterion. The measured coefficient of permeability and the Chapuis's two equations were also compared. And a predicting equation for the coefficient of permeability was suggested, which is suitable for the mixture soil with the B/S ratio used in this study. The optimal weight ratio for the mixture soils used in this study was 15% in the both cases of permeability and shear strength.

  • PDF

Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method (수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구)

  • 김형주;원명수
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-146
    • /
    • 1997
  • In this study, a large consolidation test was carried out to estimate the consolidation behaviour of dredged clay ground improved by horizontal drain using plastic board drain with a vacuum pressure. The test results were analyzed by a numerical simulation using potential consolidation theory applied to a hollow cylinder. The rapid decreases in pore pressure and the drain speed in the plastic board indicate that the consolidation occurred quickly after the vacuum state was applied to the test soil. According to the numerical analysis obtained by applying the linear potential consolidation theory to a clay hollow cylinder with external radial drainage, the pore pressure is affected by the strain and the permeability of the soil rather than by the diffusion types. Therefore, measured surface settlement agreed with the numerical solution at the point where consolidation pressure increasing rate u: -0.5. Also the behaviour of the clay layer settlement in the place where the drain was installed was similar to that shown in Barron's consolidation theory. Finally, the design and construction procedure including the selection of the appropriate arrangement of horizontal drains were discussed based on the results of the laboratory tutsts. It is also shown that the potential consolidation theory make it possible to predict consolidation behaviour in the field using horizontal drains exactly.

  • PDF

Analysis of Isochrone Effect of Clayey Soils using Numerical Analysis (수치해석을 이용한 점성토 지반의 아이소크론 영향 분석)

  • Lee, Yun-Sic;Lee, Jong-Ho;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.84-97
    • /
    • 2019
  • Purpose: The consolidation settlement of soft ground is dependent on the distribution of pore water pressure which is also affected by hydraulic conductivities (boundary condition) of layers, thickness of clayey soil layer and surcharge. Results: However, the current consolidation analyses are mostly based on Terzaghi's consolidation theory that assumes the initial pore water pressure ratio with depth to be constant. In this study, numerical analysis are carried out to investigate the variation of pore water pressure dissipation with depth and thickness of clayey soil layer, time, surcharge as well as drainage conditions. Conclusion: Comparative study with Terzaghi's consolidation theory is also conducted. The result shows that Terzaghi's consolidation theory should be used with caution unless it is ideally corresponded to the isochrone.

Application of Linear Curve Fitting Methods for Slug Test Analysis in Compressible Aquifer (압축성이 큰 지반에서 순간변위(충격)시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods)의 적용)

  • Choi, Hang-Seok;Lee, Chul-Ho;Nguyen, The Bao
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.99-107
    • /
    • 2007
  • The linear curve fitting methods such as the Hvorslev method and the Bouwer and Rice method provide a rapid and simple means to analyze slug test data for estimating in-situ hydraulic conductivity (k) of geologic material. However, when analyzing a slug test in a relatively compressible aquifer, these methods have difficulties in fitting a straight line to the semi-logarithmic plot of the test data that shows a concave-upward curvature because the linear curve fitting methods ignore the role of the compressibility or specific storage ($S_s$) of an aquifer. The comparison of the Hvorslev method and the Bouwer and Rice method is made far a partially-penetrating well geometry to show analytically that the Hvorslev method estimates higher hydraulic conductivity than the Bouwer and Rice method except that the well intake section locates very close to the bottom of the aquifer. The effect of fitting a straight line to the slug test data is evaluated along with the dimensionless compressibility parameter (${\alpha}$) ranging from 0.001 to 1. A modified linear curve fitting method that is expanded from Chirlin's approach to the case of a partially penetrating well with the basic-time-lag fitting method is introduced. A case study for a compressible glacial till is made to verify the proposed method by comparing with a type curve method (KGS method).

Seepage Characteristics of Embedded Rock Layer Under the Earth Fill (성토제 하부에 매설된 사석층의 침투특성)

  • Lee Haeng-Woo;Chang Pyoung-Wuck
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.63-72
    • /
    • 2005
  • Rocks are dumped to soft marine ground in order to improve trafficability and construction conditions in the tideland reclamation construction sites. Though this rock layer under earth fill has caused in a serious seepage problems after construction, seepage behaviors of this embankment structure is not correctly investigated. Water flow through rock layers is, in general, known as Non-Darcy's flow. However, the embedded rock layer under earth fill is not known whether its flow is governed by Darcy's or Non-Darcy's law. Therefore, a numerical analysis, laboratory model test and filed investigations were performed for analyzing the those seepage characteristics in this research. Results show that there is significance of $95\%$ of confidence between observed heads and seepage rates, and the calculated ones by SAMTLE which is developed under the assumption that the water flows through the two-layer system obey the Darcy's flow. And after operating the hydraulic gradient(i) of $0.10\~0.55$ upon laboratory model, these seepage characteristics of the embedded rock layer show that Reynolds Numbers are less than 10 and the relationship between these velocities of rock layer(v) and hydraulic gradients(i) is linearly proportional with more than 0.79 of the coefficient of correlation $(R^2)$. And the Reynolds Number of the velocity calculated by the relation of v=ki in the embedded rock layer of OO sea dike is $1\~6$. It shows also laminar flow. Based on these results, it is concluded that the seepage characteristics of embedded rock layer under earth fill can be laminar and Darcy's flow.

Experimental Study on Engineering Characteristic of the Waste Landfill Soil Admixed Linear (폐기물매립지 토사계 혼합 차수재의 공학적 특성에 대한 실험적 연구)

  • Chang, Yongchai;Kim, Jinchun;Jeong, Ogki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Leachates resulting from the waste landfill of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water to and prevent this second pollution. The material used as Liner layer should have water resistance and be less than permeability coefficient of $1{\times}10^{-7}$ cm/sec. As it is very difficult to get this kind of natural clay with low permeability around the field, the suitable way to get the low permeable material is to use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil, which can resist water, is commonly used in the site, namely, bentonite and MCG cementious mateiral mixed soil, which is widely used as Liner layer in the reclaimed land of waste, is recognized in Liner and durability. The study was performed to find the effect of additive of the bottom liner in the waste landfill. The aim of this paper is to explain of the field application examples as well as the data of experimental research with the engineering properties of Liner layer of the reclaimed land.

  • PDF

Characteristic of Permeability with the Sand, Calcium Bentonite and Solidifier Mixtures according to Selective Reaction of TCE (트리클로로에틸렌(TCE) 선택적 반응에 따른 모래, 칼슘-벤토나이트 및 겔화제 혼합차수물의 투수 특성)

  • Yun, Seong Yeol;Choi, Jeong Woo;Oh, Minah;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • To improvement the swelling characteristics of the existing cutoff wall against the moisture, the permeability of the sand, calcium bentonite and solidifier mixture according to the contact with trichloroethylene (TCE) was evaluated. Characteristics analysis and the permeability test of the research materials were performed. The permeability was decreased as the mixing ratio of the calcium bentonite was increased and it was increased as the mixing ratio of the solidifier was increased. In conclusion, when mixing 15% of calcium bentonite and more than 30% of solidifier, the permeability coefficient in the underground water movement was analyzed as more than α × 10-4 cm/sec showing that it does not block the underground water movement. In addition, as the permeability coefficient of mixtures after TCE reaction was analyzed as less than α ×10-7 cm/sec, it satisfied the condition of blocking layer (less than 1.0 × 10-6 cm/sec). Therefore, the calcium bentonite and solidifier can be utilized as barrier that showing the characteristic of percolation ability conversion in soil and underground water contaminated with TCE.

3-D Groundwater Flow Analysis of Excavated Ground by Reliability Method (신뢰성기법에 의한 굴착지반에서의 3차원 지하수 흐름해석)

  • Kim, Hong-Seok;Park, Joon-Mo;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.69-76
    • /
    • 2006
  • A reliability-groundwater flow analysis is performed and the influence of flow parameters on the probability of exceeding the threshold value is examined. For this study, the 3-D numerical groundwater flow program, DGU-FLOW, is developed by extending the 2-D flow program and is coupled to the first and second order reliability program. The 3-D flow program is verified by solving the examples of groundwater flow through the underground excavation and comparing the results from commercial MODFLOW program. Reliability routine of the program is also verified by comparing the probability of failure with that of Monte-Carlo Simulation. The reliability analysis of the groundwater flow showed that the probability of failure from the first and second order reliability method are quite close to that of Monte-Carlo Simulation. from the parametric study of hydraulic conductivity of soil layers, the increase of both mean and variance of hydraulic conductivity results in the increase of probability of exceeding the threshold flow quantity. The probability of failure was more sensitive to constant head located at the end of the flow domain than the other parameters.

A Characteristic of Freeze and Thaw on Use for Stabilized Soil in Landfill Bottom Liners (매립지 바닥층의 고화토 포설시 동결/융해의 특성)

  • Kim, Heung-Seok;Lee, Song;Lee, Jai-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Recently, Korea brings to remarkable levels about industrialization, modernization, population and development of technology. Especially, the rapidly growing from this technology has increased the burden on existing industrial waste landfills. The purpose of this research is to existing knowledge base of landfill cover liner behavior during periods freeze/thaw. Although these tests have been invaluable in clarifying the problem of freeze/thaw, extending the results of such experimental studies to prototype landfills are questionable. For this investigation, the author utilized a large scale laboratory simulation allowing inclusion of the field depth of the cover systems, layered soil profiles, rainfall simulation, a cold climate and boundary conditions similar to those encountered in the landfill. And the soil materials used stabilized soils (mixed clays, cements, and minerals) instead of clays. The bottom liners are made up of drainage layer (30cm), stabilized layer (75cm), and leach collection layer (60cm). The stabilized layers are made up of supporting layer (45cm) and impermeable layer (30cm) - consisted of $P_A$ and $P_B$ layer.

  • PDF