• Title/Summary/Keyword: 투사렌즈

Search Result 22, Processing Time 0.019 seconds

A study on lighting angle for improvement of 360 degree video quality in metaverse (메타버스에서 360° 영상 품질향상을 위한 조명기 투사각연구)

  • Kim, Joon Ho;An, Kyong Sok;Choi, Seong Jhin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.499-505
    • /
    • 2022
  • Recently, the metaverse has been receiving a lot of attention. Metaverse means a virtual space, and various events can be held in this space. In particular, 360-degree video, a format optimized for the metaverse space, is attracting attention. A 360-degree video image is created by stitching images taken with multiple cameras or lenses in all 360-degree directions. When shooting a 360-degree video, a variety of shooting equipment, including a shooting staff to take a picture of a subject in front of the camera, is displayed on the video. Therefore, when shooting a 360-degree video, you have to hide everything except the subject around the camera. There are several problems with this shooting method. Among them, lighting is the biggest problem. This is because it is very difficult to install a fixture that focuses on the subject from behind the camera as in conventional image shooting. This study is an experimental study to find the optimal angle for 360-degree images by adjusting the angle of indoor lighting. We propose a method to record 360-degree video without installing additional lighting. Based on the results of this study, it is expected that experiments will be conducted through more various shooting angles in the future, and furthermore, it is expected that it will be helpful when using 360-degree images in the metaverse space.

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.