• Title/Summary/Keyword: 퇴적연대

Search Result 201, Processing Time 0.029 seconds

Chronological Study on the Deposits in Yongcheon River (미시령(彌矢嶺) 용촌천(龍村川) 하상퇴적지(河床堆積地)의 연대학적(年代學的) 연구(硏究))

  • Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.7 no.1
    • /
    • pp.23-34
    • /
    • 1990
  • Based on the topographical and vegetational indicators on sediment movement of Yongcheon River, the movement occurence years were estimated. 1. The cross sectional shapes of deposits in torrential stream are stepped and even-aged forests tend to be established on each step. 2. Generally the older the forest age is, the higher the height of step from the lowest base tend to become. 3. The ages of trees indicate the year when deposition occured, and so may be useful as plant indicator to get chronological information.

  • PDF

Geomorphological Properties and Changes on River-Mouth Bar at Song-cheon River (송천 하구 사주의 지형 특성과 변화 과정)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.6
    • /
    • pp.693-706
    • /
    • 2011
  • The Geomorphological properties and ages of river-mouth bar at Song-cheon River in the East Coast of Korea, Yeongdeok-gun, Gyeongbuk Province are estimated, and the long-term and short-term changing processes and causes are analyzed. Sand grains of the bar near the coastline show the finer trends from south to north and these can be attributed to the northward movement of waves and long-shore currents. The absolute ages of bar and nearby coastal sand dune are less than approximately 100 years ago, indicating that the bar has experienced the active geomorphological changes. While the inlet located at south part of the bar between 1971 and 1995, the inlet has located at north or middle part since 1995. These may caused by the changes of movement directions of waves and long-shore currents due to the apparent northward movements of winds and currents. In short-term, the higher elevation, larger area, simpler landform relief and more variable location of inlet and morphology of bar can be observed between September and March due to the dominance of sedimentary processes by wave and wind processes.

A Study on the Physicochemical Characteristics and Formation Age of Coastal Sand Dunes in the Okjukdong and Dajindong, Daecheong Island (대청도 옥죽동·대진동 사구의 물리·화학적 특성 및 퇴적시기 고찰)

  • Shin, Won Jeong;Kim, Jong Wook;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.63-80
    • /
    • 2018
  • The purpose of this study was to investigate the physicochemical characteristics and formation age of sand dunes in the Okjukdong and Dajindong, Daecheong Island. As a result, most of the sand deposited in Okjukdong were composed of medium sized sand with moderately well sorted. The $SiO_2$ and $Al_2O_3$ accounted for a very high proportion of these deposits. There were some differences in characteristics between the sands in the dune and beach, whereas similar characteristics were observed among the materials (OJ-B, OJ-C and OJ-D) in the dune. In case of Dajindong, heterogeneous geochemical characteristics were found in the lower point. It was estimated that this was due to the influence of Daejin-dong black beach. Age dating results showed that uncovered dunes in Okjukdong were deposited $0.44{\pm}0.02$ ~ $0.50{\pm}0.02ka$, and sand depositsin Dajindong were formed $0.16{\pm}0.01$ ~ $0.18{\pm}0.01ka$. In both Okjukdong and Dajindong, sand deposits estimated to be formed 70 years ago, therefore it can be estimated that sand movement was active throughout the area from about hundred years ago. In this study area, the growth of sand dunes has been active in recent several decades or hundred years. It seems that there were different regions where deposits predominated over time. The source of dune sand was also different from time to time. Since the windbreak forest was established, the natural growth of sand dunes was limited, and sand nourishment was carried out by period. Therefore, in order to protect and continuously utilize coastalsand dunesin Daecheong Island, it is necessary to prepare conservation plan.

Sources Identification of Anthropogenic Pb in Ulleung Basin Sediments using Stable Pb Isotope Ratios, East/Japan Sea (동해 울릉분지 시추 퇴적물에서 안정 Pb 동위원소를 이용한 Pb의 기원 추정)

  • Choi, Man-Sik;Uoo, Jun-Sik;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.315-327
    • /
    • 2007
  • This study investigated temporal and spatial variation of Pb and stable Pb isotopes accumulated in Ulleung Basin core sediments (4) using MC ICP/MS in order to identify the sources of anthropogenic Pb in the East/Japan Sea. Leached (1M HCl) Pb concentration and isotope ratios ($^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$) were nearly constant during 300 yrs past than 1930, but increased up to twice in concentration and as much as 3.41% (1.70%) after 2000. On the other hand, residual Pb concentrations were nearly constant for past 400 yrs. The accumulation rates of anthropogenic Pb in the basin area were in the range of $3.1-3.5mg/m^2/yr$, which were similar levels to total atmospheric Pb deposition fluxes from 1990s to the present. In the slope area, more increase of anthropogenic Pb accumulation than the levels expected from mass accumulation rate could be found after the middle of 1990s. From the detailed evaluation for the temporal and spatial variation of accumulation rate and isotope ratios of anthropogenic Pb, we proposed probable sources and pathways of anthropogenic Pb. Pb emmision by coal burning from the China and Korea initiated the accumulation of anthropogenic Pb in the sediments of East/Japan Sea from 1930s. The accumulation of Pb increased by the addition of anti-nocking agents from both countries untill the beginning of 1990s, but from the middle of 1990s to the present, the phase-out of gasoline additives and the rapid increase of coal burning from the China maintained the atmospheric Pb levels in the Ulleung basin nearly similar to before. However, the local sources within this basin might take an important role in the rapid increase of anthropogenic Pb accumulation in slope areas from the middle of 1990s.

Textural and Geochemical Characteristics of Ferromanganese Crusts from the Lomilik and Litakpooki Seamounts, Marshall Islands, West Pacific (서태평양 마샬제도 Lomilik와 Litakpooki 해저산 망간각의 조직 및 지화학적 특성)

  • Woo, Kyeong-Sik;Park, Sung-Hyun;Jung, Hoi-Soo;Moon, Jai-Yoon;Lee, Kyeong-Yong;Choi, Youn-Ji
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2001
  • Six ferromanganese crusts from the Lomilik and Litatfooki seamounts in the Marshall Islands were analyzed for texture, geochemistry and stratigraphy to delineate the paleoceanographic conditions. The crusts can be divided into three layers; 1) outermost massive layer (Layer 1), 2) middle porous Fe-oxides rich layer infllled with biointemal clasts (Layer 2), and 3) innermost massive layer cemented and/or replaced by carbonate fluoapatite (CFA) (Layer 3). The Layer 1 contains higher Mn, Co, Ni, and Mg than other two layers, and the Layer 2 was relatively more enriched in Fe, Al, Ti, Ba, Cu, and Zn. However, the Layer 3 shows higher Ca and P and lower Mn, Fe, Co, and Ni contents than overlying two layers. Based on the Co-chronometry, the crusts are postulated to have begun to grow from 56-31 Ma (early Eocene to Oligocene). The boundaries between layers 1 and 2, and layers 2 and 3 are dated to be 7-3 Ma and 26-14 Ma, respectively. High contents of Ca and P in Layer 3 clearly indicate that the layer had been phosphatized prior to the formation of Layer 2. Considering the well-preserved mjcrostructures in Layer 3, it is unlike that the crusts themselves were recrystallized in suboxic condition. Also, the lower Co concentrations in Layer 3 may imply that the Co supply was not constant during the formation of Layer 3. Layer 2, characterized by the porous texture, grew over Layer 3 during 26-9 Ma. Internal biogenic sediments including foraminifera within the original cavities and the enrichment of organophillic elements such as Ba, Cu, and Zn, suggest that Layer 2 have below high production regions. Also, high content of allumino silicate components may indicate increased terrigeneous input during the formation of Layer 2. The Layer 2. The Layer 1 has been subjected to little diagenetic influence since the Pliocene.

  • PDF

Geological Structure of the Metamorphic Rocks in the Muju-Seolcheon Area, Korea: Consideration on the Boundary of Ogcheon Belt and Ryeongnam Massif (무주-설천 지역 변성암류의 지질구조: 옥천벨트와 영남육괴의 경계부 고찰)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • The Muju-Seolcheon area, which is known to be located in the boundary of Ogcheon Belt and Ryeongnam Massif (OB-RM), consists of age unknown or Precambrian metamorphic rocks (MRs) [banded biotite gneiss, metasedimentary rocks (black phyllite, mica schist, crystalline limestone, quartzite), granitic gneiss, hornblendite], Mesozoic sedimentary and igneous rocks. In this paper are researched the structural characteristics of each deformation phase from the geometric and kinematic features and the developing sequence of multi-deformed rock structures of the MRs, and is considered the boundary location of OB-RM with the previous geochemical, radiometric, structure geological data. The geological structure of this area is at least formed through four phases (Dn-1, Dn, Dn+1, Dn+2) of deformation. The Dn-1 is the deformation which took place before the formation of Sn regional foliation and formed Sn-1 foliation folded by Fn fold. The Dn is that which formed the Sn regional foliation. The predominant Sn foliation shows a NE direction which matches the zonal distribution of MRs. A-type or sheath folds, in which the Fn fold axis is parallel to the direction of stretching lineation, are often observed in the crystalline limestone. The Dn+1 deformation, which folded the Sn foliation, took place under compression of NNW~NS direction and formed Fn+1 fold of ENE~EW trend. The Sn foliation is mainly rearranged by Fn+1 folding, and the ${\pi}$-axis of Sn foliation, which is dispersed, shows the nearly same direction as the predominant Fn+1 fold axis. The Dn+2 deformation, which folded the Sn and Sn+1 foliations, took place under compression of E-W direction, and formed open folds of N-S trend. And the four phases of deformation are recognized in all domains of the OB-RM, and the structural characteristics and differences to divide these tectonic provinces can not be observed in this area. According to the previous geochemical and radiometric data, the formation or metamorphic ages of the MRs in and around this area were Middle~Late Paleproterozoic. It suggests that the crystalline limestone was at least deposited before Middle Paleproterozoic. This deposition age is different in the geologic age of Ogcheon Supergroup which was recently reported as Neoproterozoic~Late Paleozoic. Therefore, the division of OB-RM tectonic provinces in this area, which regards the metasedimentary rocks containing crystalline limestone as age unknown Ogcheon Group, is in need of reconsideration.

Sturctural Geometry of the Pyeongchang-Jeongseon Area of the Northwestern Taebaeksan Zone, Okcheon Belt (옥천대 북서부 태백산지역 평창-정선일대 지질구조의 기하학적 형태 해석)

  • Jang, Yirang;Cheong, Hee Jun
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.541-554
    • /
    • 2019
  • The Taebaeksan Zone of the Okcheon Belt is a prominent fold-thrust belt, preserving evidence for overlapped polyphase and diachronous orogenic events during crustal evolution of the Korean Peninsula. The Pyeongchang-Jeongseon area of the northwestern Taebaeksan Zone is fault-bounded on the western Jucheon and southern Yeongwol areas, showing lateral variations in stratigraphy and structural geometries. For better understanding these geological characteristics of the northwestern Taebaeksan Zone, we have studied the structural geometry of the Pyeongchang-Jeongseon area. For this, we have firstly carried out the SHRIMP U-Pb age analysis of the age-unknown sedimentary rock to clarify stratigraphy for structural interpretation. The results show the late Carboniferous to middle Permian dates, indicating that it is correlated to the Upper Paleozoic Pyeongan Supergroup. In addition to this, we interpreted the geometric relationships between structural elements from the detailed field investigation of the study area. The major structure of the northwestern Taebaeksan Zone is the regional-scale Jeongseon Great syncline, having NE-trending hinge with second-order folds such as the Jidongri and Imhari anticlines and the Nambyeongsan syncline. Based on the stereographic and down-plunge projections of the structureal elements, the structural geometry of the Jeongseon Great syncline can be interpreted as a synformal culmination, plunging slightly to the south at its southern area, and north at the northern area. The different map patterns of the northern and southern parts of the study area should be resulted in different erosion levels caused by the plunging hinges. Considering the Jeongseon Great syncline is the major structure that constrains the distribution of the Paleozoic strata of the Pyeongchang and Jeongseon areas, the symmetric repetition of the lower Paleozoic Joseon Supergroup in both limbs should be re-examined by structural mapping of the Hangmae and Hoedongri formations in the Pyeongchang and Jeongseon areas.

Study on Resource Plants of the Mt. Geonji, Jeonju City (전주시 건지산 일대의 자원식물상 연구)

  • Oh, Hyun-Kyung;Beon, Mu-Sup;Lim, Seong-Gu;Park, Joon-Moh;Kim, Kae-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.73-82
    • /
    • 2008
  • The resource plants of the Mt. Geonji was listed 354 taxa; 92 families, 242 genera, 303 species, 48 varieties and 3 forms. 354 taxa listed consists of 205 taxa of edible plants(57.1%),234 taxa of medicinal plants(65.2%), 167 taxa of ornamental plants(46.5%) and 218 taxa of the others(60.7%). Specific plant species by floral region were total 22 taxa; Trapella sinensis var. antennifera in class IV, Iris ensata var. spontanea in Class II, 16 taxa(Salix glandulosa, Alnus hirsuta, Chrysosplenium flagelliferum, Mallotus japonicus, Ilex macropoda, Grewia biloba var. parviflora, Vaccinium oldhami, Lysimachia barystachys, Fraxinus mandshurica, etc.) in class I. The naturalized plants in this site were 12 families, 23 genera, 28 species, 2 varieties, 30 taxa(Bromus unioloides, Phytolacca americana, Oenothera erythrosepala, Ipomoea hederacea var. hederacea, Aster pilosus, Erechtites hieracifolia) and naturalization rate was 8.5% of all 354 taxa vascular plants. Wild plants disturbing ecosystem like Solanum carolinense and Ambrosia artemisiifolia var. elatior have been increasing. So, it needs continuing control and conservation measures on the plant ecosystem.

Formation Environment of Quaternary deposits and Palynology of Jangheung-ri Archaeological Site (Jiphyeon County, Jinju City), Korea (진주 집현 장흥리 유적 제4기 퇴적층 형성 및 식생환경 연구)

  • 김주용;박영철;양동윤;봉필윤;서영남;이윤수;김진관
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.9-21
    • /
    • 2002
  • In Korea, many open-air upper palaeolithic sites are located at the river valley, particularly exposed in gently rotting terrain along the river course. They are situated at an altitude less trail 30 m above present river bottom, and covered with the blankets of slope deposits of several meters in thickness. The purpose of this research is to eluridate depositional and vegetational environment of the alluvial upper palaeolithic Jangheung-ri sites on the basis of analytical properties of grain size population, chronology, palynology, soil chemistry and clay mineralogy and magnetic susceptibility of the Jangheung-ri Quaternary formations. The lithostratograpy of Jangheung-ri sit is subdivided into 3 layers based on the depositional sequence and radiocarbon ages. From bottom to top, they are composed of slope deposits with lower paleosol layers, young fluvial sand and gravel with backswamp organic muds, and upper paleosol layers. The upper paleosol was formed under rather dry climatic condition between each flooding period. Dessication cracks were prevalent in the soil solum which was filled with secondarily minuted fragments due to pedogenetic process. The soil structure shows typical braided-typed cracks in the root part of cracking texture, and more diversified pattern of crackings downward. The young fluvial sand gravel were formed by rather perennial streams after LGM. The main part of organic muds was particularly formed after 15Ka. Local backswamp were flourished with organic muds and graded suspension materials in the flooding muds were intermittently accumulated in the organic muds until ca. 11Ka. This episode was associated with migration of Nam River toward present course. Organic muds were formed in backswamp or local pond. Abies/Picea-Betula with Ranunculaceae, Compositae, Cyperaceae were prevalent. This period is characterized with B$\Phi$lling, Older Dryas, Allerod, and Younger Dryas (MIS-1). Stone artefacts were found in the lower paleosol layers formed as old as 18Ka-22Ka. Based on the artefacts and landscape settings of the Jangheung-ri site, it is presumed that settlement grounds of old people were buried by frequent floodings of old Nam River, the river-beds of which were heavily fluctuated laterally and river-bed erosions were activated from south to north in Jangheung-ri site until the terminal of LGM9ca 17Ka).

  • PDF

An Inquiry into the Formation and Deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea (한반도 동남부 백악기 경상분지의 형성과 변형에 관한 질의)

  • Ryu In-Chang;Choi Seon-Gyu;Wee Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.129-149
    • /
    • 2006
  • Previously published stratigraphic, sedimentologic, paleontologic, paleomagnetic and geophysical data are reviewed to make an understanding on the tectonic evolution of the Cretaceous Gyeongsang (Kyongsang) basin, southeast Korea. A stratigraphic framework and a tectonic model on the formation and deformation of the Gyeongsang Basin are newly proposed on the basis of integration these data with magmatism and mineralization ages in the basin. A newly proposed stratigraphic framework indicates that strata in the basin can be subdivided into five distinct stratigraphic units that represent pre-rifting, syn-rifting, inversion I, II, and III stages. The Gyeongsang Basin was formed initially as a pre-rifting stage due to north-south extension in the Late Jurassic prior to a syn-riftins stage that resulted from east-west extension during the Early Cretaceous. In the Late Cretaceous, the basin was deformed by three-staged sequential deformation of north-south, northwest-southeast, and east-west compressions. The tectonic history of the basin has been largely controlled by the change of motion of the Izanagi Plate from north to northwest during the Cretaceous. In the early Cretaceous, the Izanagi Plate began to subduct northward beneath the Eurasian Plate and caused the left-lateral strike-slip fault systems in the southern part of the peninsula. The left-lateral wrenching of these fault systems was causally linked to development of pull-apart basins, such as the Gyeongsang Basin in the southeastern part of the peninsula. However, northwestward movement of the Izanagi Plate during the Late Cretaceous probably led to the extensive volcanism as well as sequential deformations in the basin. The stratigraphic and tectonic model, which is newly proposed as a result of this study, may be expected to enhancing the efficiency for exploration and exploitation of useful mineral resources in the basin as well as establishing geologic history in the Cretaceous Gyeongsang Basin. Together with the spatial and temporal correlation of the Cretaceous basins in adjacent areas, this stratigraphic and tectonic model provides a new geologic paradigm to delineate the sophisticated tectonic history of East Asia turing the Cretaceous.