• Title/Summary/Keyword: 퇴적물 음향특성

Search Result 48, Processing Time 0.022 seconds

Geoacoustic Modeling for Analysis of Attenuation Characteristics using Chirp Acoustic Profiling data (광역주파수 음향반사자료의 감쇠특성 분석을 위한 지질음향모델링 기법 연구)

  • Chang Jae-Kyeong;Yang Sung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • We introduce a new acoustic parameter for the classification of seafloor sediments from chirp sonar acoustic profiling data. The acoustic parameter is defined as a derivative of the unwrapped phase of the Fourier transform of acoustic profiling data. Consequently, it represents the characteristics of attenuation by dissipative dispersion in sediments. And we estimated acoustic properties by geoacoustic modeling using Chirp data obtained from the different sedimentary facies. Our classification results, when compared with the results of analysis of sampled sediments, show that the acoustic parameter discriminates sedimentary facies and bottom hardness. Thus the method in this paper is expected to be an effective means of geoacoustic modeling of the seafloor.

  • PDF

Acoustic Characteristics of Sand Sediment with Circular Cylindrical Pores in Water (수중 원통형 다공성 모래퇴적물의 음향특성)

  • 윤석왕;이용주;노희설
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 2002
  • Acoustic characteristics of water sediment were experimentally studied in laboratory. Water saturated sand sediment less than the grain size of 0.5 mm diameter is uniformly distributed in an acryl box (100 mm×100mm×42mm) with material thickness 1 mm. Pores in the acryl box are modeled as the structure of cylindrical pore tubes (diameter 3 mm and length 42 mm) filled with water. Cylindrical pore tubes have porosities 0%, 5%, 11%, 18% and 26 % controlled by the tube numbers. Transmitted acoustic waves through sand sediment specimen are analyzed as the functions of porosity and frequency from 0.3 MHz to 4 MHz. Transmitted acoustic waves are mixed with the first-kind wave from whole specimen and the second-kind wane from cylindrical pore tubes. For the center frequency 1 MHz, the first kind wave is dominant but for the center frequency 2.25 MHz, the second kind wave is dominant. In the case of the first-kind wave, as the porosity increases, the transmission coefficient decreases and the sound speed decreases to the sound speed of water. As the frequency increases, the transmission coefficient decreases but the sound speed is almost constant. In the case of the second-kind wave, as the porosity increases, the transmission coefficient increases but the sound speed is almost constant. The transmission coefficient and the sound speed are almost constant as a function of frequency.

Acoustic Property of Sandy Sediment in the Korea Strait Using Sediment Sound Velocimeter (퇴적물속도측정기를 이용한 대한해협 사질퇴적물의 음향특성)

  • 서영교;김대철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.77-85
    • /
    • 2000
  • Laboratory determinations of acoustic and physical properties in Korea Strait sediment were carried out. Sediment sound velocimeter(SSV) was employed to measure the sound velocity of sandy sediment. Distribution patterns of the acoustic and physical properties are controlled by sediment texture. The study area is divided into three provinces(mid-shelf, shelf margin and enough) based on the acoustic and physical properties. This classification matches well with the previous result[14] based on the systems tracks and depositional systems. We suggest a geoacoustic model of the Korea Strait that replacing the old model of Briggs and Fisher[5].

  • PDF

Correction of sediment sound velocity in the South sea shelf of Korea (남해 대륙붕 퇴적물의 음파전달속도 보정)

  • Jung J. H.;Lee G. S.;Seo Y. K.;Kim D. C.;Lee G. H.;Park S. C.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.433-436
    • /
    • 2004
  • 퇴적물의 음파전달속도에 크게 영향을 주는 온도변화에 따른 속도변화를 측정한 결과 기존에 제시되었던 값들보다 약간 낮은 값을 보여주었으나 큰 차이를 보이지는 않았다. 결국 해양퇴적물의 온도에 따른 속도 변화율은 해수에서의 변화율과 거의 유사한 것으로 보아 해양퇴적물의 경우 온도에 따른 속도 변화는 공극수의 음향특성에 크게 영향을 받는 것으로 보인다. 서로 다른 퇴적물 유형에 대하여 온도에 따른 속도변화를 조사한 결과도 절대값은 달라도 변화양상은 거의 유사한 것으로 나타났다.

  • PDF

Seafloor Sediment Classification Using Nakagami Probability Density Function of Acoustic Backscattered Signals (음향후방산란신호의 나카가미 확률밀도함수를 이용한 해저퇴적물 분류)

  • Bok, Tae-Hoon;Paeng, Dong-Guk;Park, Yo-Sup;Kong, Gee-Soo;Park, Soo-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.165-173
    • /
    • 2009
  • The physical properties of a seafloor sediment have been used as a basic data for the ocean survey. Conventional methods such as a coring, a drilling, and a grabbing have been used to explore the physical properties but these methods have a number of shortcomings as it is time consuming, expensive and spatially limited. To overcome these limitations, seafloor sediment classification using acoustic signals has been studied actively. In this paper, we obtained the backscattered signal from the seafloor sediment using an echo sounder which is one kind of seafloor topography equipment. Nakagami probability density function of the backscattered signals from the seafloor sediment was computed and a Nakagami parameter was compared with the physical properties of the seafloor sediment. We have confirmed that Nakagami parameter, m is correlated with the physical properties of a seafloor sediment. This study will be utilized as a basic data of the seafloor sediment research.

Implementation of Acoustic Properties Measurement System Based on LabVIEW Using PXI for Marine Sediment (PXI를 이용한 LabVIEW기반 해양퇴적물의 음향특성 측정시스템 개발)

  • Park, Ki-Ju;Kim, Dae-Choul;Lee, Gwang-Soo;Bae, Sung Ho;Kim, Gil Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.216-222
    • /
    • 2015
  • A previous velocity measurement system for marine sediment had several problems such as the errors occurred when picking first arrival time and the inconvenient measurement procedure. In order to resolve these problems, we developed a new acoustic properties measurement system by using PXI (PCI eXtentions for Instrumentation) module based on LabVIEW. To verify the new system, we measured the velocity and attenuation of sediment using the new system in a parallel with the previous system under the same experimental environment. The result of measurement showed 1~2% margin of error for the velocity as well as similar attenuation values. We concluded that the new system can efficiently measure the acoustic properties of marine sediment. It also has an advantage to construct the database of acoustic data and raw signal.

Study on the Characteristics of Gas Hydrate Layers Distributed in the Southern Ulleung Basin, the East Sea (동해 울릉분지 남부해역에 분포하는 가스 하이드레이트층의 특성 연구)

  • Huh Sik;Yoo Hai-Soo;Kim Han-Joon;Han Sang-Joon;Lee Yong-Kuk
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.18-22
    • /
    • 2004
  • To identify and interpret the distribution and the characteristics of the gas hydrate layers in the Ulleung Basin, we have surveyed and gathered the multi-channel seismic data, Chirp sub-bottom profiler, SeaBeam and 12 m piston core samples since 1996. In previous works, high-resolution seismic profiles showed acoustic anomalies such as acoustic void, acoustic turbidity and pock mark which indicate the presence of gas-charged sediments. The patterns of horizontal degassing cracks originated from free methane expansion is the strong indicator of shallow gas-charged sediments in the core samples. The observation of submarine slides and slumps from destabilizing the sediments in the southern part of the Ulleung Basin may also point out that the gas had been released from gas hydrate dissociation during lowstand of sea level. The multi-channel seismic data show BSR, blanking and phase reversal. The gas hydrate layers above which large-scale shallow gases are distributed exist at the depth of about 200 m from the sea-floor with water depth of 2,100 m. From the interpretation of seismic sections in the southern Ulleung Basin, gas hydrate layers occur in the Pleistocene-Holocene sediments. These gas-charged sediments, acoustic anomalies and BSR may be all related to the existence of gas hydrate layers in the study area.

  • PDF

Subsidence Characteristics of Artificial Reefs using Sediment Grain Size and Shear Strength (퇴적물의 입도 및 전단강도를 이용한 인공어초 침하특성)

  • Kim, Ho-Sang;Kim, Chang-Gil;Seo, Young-Kyo;Kim, Gil-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.46-53
    • /
    • 2005
  • This paper describes the mean grain size and shear strength properties related to subsidence characteristics using sediment samples and acoustic images obtained from artificial reef areas in Tongyoung and Jangsungpo offshore. The acoustic images collected from chirp sonar and side scan sonar show well the attitude/orientation, the distribution pattern, and the degree of subsidence of artificial reefs, suggesting the possibility of suitable site investigation and the management of the reefs using acoustic sonar. The sediments were largely composed of clayey silt and silty clay. The mean grain sizes in Tongyoung and Jangsungpo offshore show the ranges of 5${\sim}$9${\Phi}$ and 8${\sim}$9${\Phi}$, respectively. The shear strength was significantly increased at the depths of 20cm in Tongyoung offshore and 80cm in Jangsungpo offshore, corresponding to the subsidence depth of artificial reefs. The relationship between mean grain size and shear strength did not show a correlation, suggesting the shear strength does not totally depend on mean grain size. Provided subsidence characteristics with respect to various artificial reefs and seabed condition are investigated in more details, the constructing area of the reef can be more extended.

Physical and Acoustic Properties for Unconsolidated Sediment in the Kwangyang Bay: In Comparison with the Continental Terrace Sediment in the North Pacific (광양만 미고결 퇴적물의 물리적 및 음향학적 성질 : 북태평양 대륙붕 및 사면 자료와의 비교)

  • KIM Dae-Choul;KIM Gil-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.289-302
    • /
    • 1991
  • Laboratory determination of acoustic property for unconsolidated sediment of Kwangyang Bay was carried out. The compressional wave velocity was correlated to other physical properties and sediment textures to establish a geoacoustic model of the bay. The model was compared to the North Pacific continental terrace sediment. Velocity of the bay is systematically lower(0.02-0.04km/s) than that of the North Pacific. Average velocity of the bay is 1.521km/s. The lowest velocity is measured at the southwestern part of the bay. This area coincides with high amount of fine-grained sediment related to slower circulation. The overall tendency is, however, similar to the North Pacific continental terrace sediment.

  • PDF

Seabed Classification Using the K-L (Karhunen-Lo$\grave{e}$ve) Transform of Chirp Acoustic Profiling Data: An Effective Approach to Geoacoustic Modeling (광역주파수 음향반사자료의 K-L 변환을 이용한 해저면 분류: 지질음향 모델링을 위한 유용한 방법)

  • Chang, Jae-Kyeong;Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool;Park, Gun-Tae;Yoo, Hai-Soo;Yang, Sung-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.158-164
    • /
    • 1998
  • We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.

  • PDF