• Title/Summary/Keyword: 통합 로켓-램제트

Search Result 5, Processing Time 0.017 seconds

A Study on the Ignition and Combustion Characteristics During the Transition from the Rocket Booster to Ramjet Sustainer (램제트 천이 시 점화 및 연소 특성 연구)

  • Yoon, Jae-Kun;Yoon, Hyun-Gull;Gil, Hyun-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.996-999
    • /
    • 2011
  • The flow and combustion dynamics in the ignition and ramjet sustainer phase of an integrated rocket-ramjet(IRR) engine are investigated. The physical model includes the entire engine flowpath, from the freestream in front of the inlet to the exit of the exhaust nozzle. The flowfield obtained from a rocket booster study is used as the initial condition for the present analysis, so that the complete operation history of the engine can be obtained. The analysis for the primary factor governing flame propagation during the ignition and the key mechanisms for driving and sustaining the flow oscillations are performed.

  • PDF

Technical Review and Analysis of Ramjet/Scramjet Technology I. Ramjet Engine (Liquid Ramjet, Ducted Rocket) (램제트/스크램제트의 기술동향과 소요기술 분석 I. 램제트 엔진(액체램제트, 덕티드로켓))

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.72-86
    • /
    • 2006
  • A technical review of current ramjet propulsion is presented. In addition to summarize the current status of ramjet technology, new key techniques like Boosting technique easily adapting total impulse of booster, flame stabilization technique with minimized ramjet combuster length, variable nozzle-inner-surface technique realizing wide flight-envelop, and thermal protection technique for long operating time are identified. Actually various Ramjet propulsion technology has been matured and expanding to both military and combined cycle application. Yet many opportunities remain to be challenged by future generations of explorers to utilize s typical ramjet propulsion system for multi-purpose(multi-platform and multi-target) missiles, for example, American JSSCM and Russian Yakhont missiles, improving both reliability of techniques and downsizing development cost of new propulsion system.

Supersonic ASCMs of Soviet/Russia (소련/러시아의 초음속 대함유도탄)

  • Kim, Ki-Un;Lee, Ho-Il;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.27-35
    • /
    • 2021
  • A technical review of Soviet/Russian supersonic anti-ship cruise missiles is presented. The supersonic anti-ship cruise missiles is one of the weapons for asymmetric power. The supersonic speed of the missiles is very useful both for attacking a time critical target and for improving target-penetration characteristics of the missile. The survivability of the missiles has also been increased by the improved concept of operation. Supersonic cruise missiles is greatly affected by the evolution of propulsion technology. Early supersonic cruise missiles adopt turbojet engines and rocket motors. The use of the integrated rocket-ramjet engine reduced the size of the supersonic missile, so today's supersonic cruise missiles are suitable to be deployed in various platforms. Nowadays, export versions of the missiles are actively being developed.

Performance Analysis of the Nozzleless Booster (무노즐 부스터 성능해석)

  • Kim, Kyungmoo;Khil, Taeock;Ryu, Taeha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.72-82
    • /
    • 2017
  • Nozzleless booster is one of the applicable components for integral rocket ramjet (IRR). In order to predict nozzleless solid booster performance, the simplified theoretical analysis was applied for L/D=5, 6, 7, 9, 11, and 13. Al-HTPB and Zr-HTPB propellant with a high metal content were used to increase the hardness because of the combustion gas flow effect. It was found that the trends between the simplified theoretical analysis and experiments were similar.

Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine (로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석)

  • Lee, Kyung-Jae;Yang, Inyoung;Lee, Yang-Ji;Kim, Chun-Taek;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.10-18
    • /
    • 2015
  • Performance requirement analysis and weight estimation of a reusable launch vehicle with a rocket-based air-breathing engine(RBCC : Rocket Based Combined Cycle) were performed. Performance model for an RBCC engine was developed and integrated with flight trajectory model. The integrated engine-trajectory model was validated by comparing the results with those from previous research reference. Based on the new engine-trajectory model and previous research results, engine performance requirements were derived for an reusable launching vehicle with gross take-off weight of 15 tones. Dependence of the propellant amount requirement on the mode transition Mach number of the engine was also analyzed.