• Title/Summary/Keyword: 통신해양기상위성

Search Result 197, Processing Time 0.024 seconds

Development of Korea Ocean Satellite Center (KOSC): System Design on Reception, Processing and Distribution of Geostationary Ocean Color Imager (GOCI) Data (해양위성센터 구축: 통신해양기상위성 해색센서(GOCI) 자료의 수신, 처리, 배포 시스템 설계)

  • Yang, Chan-Su;Cho, Seong-Ick;Han, Hee-Jeong;Yoon, Sok;Kwak, Ki-Yong;Yhn, Yu-Whan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • In KORDI (Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI (Geostationary Ocean Color Imager) instrument which is loaded on COMS (Communication, Ocean and Meteorological Satellite); it will be launched in 2008. Ansan (the headquarter of KORDI) has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified into antenna and RF. Antenna is designed to be $\phi$ 9m cassegrain antenna which has 19.35 G/T$(dB/^{\circ}K)$ at 1.67GHz. RF module is divided into LNA (low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem. The existing building is re-designed and arranged for the KOSC operation concept; computing room, board of electricity, data processing room, operation room. Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet. and it is also being considered constructing outer data distribution system as a web hosting service for offering received data to user less than an hour.

Characteristics of the Mission Planning for COMS Normal Operation (천리안위성 정규 운영에 대한 임무계획 특성)

  • Cho, Young-Min;Jo, Hye-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.163-172
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2^{\circ}$ East longitude on the geostationary orbit and currently under normal operation service since April 2011. For the sake of the executions of the meteorological and the ocean mission as well as the satellite control and management, the satellite mission planning is daily performed. The satellite mission plans are sent to the satellite by the real-time operation and the satellite executes the missions as per the mission plans. In this paper the mission planning for COMS normal operation is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, and seasonal mission planning activities. The successful mission planning is also confirmed with the first one-year normal operation results.

STATION-KEEPING FOR COMS SATELLITE BY ANALYTIC METHODS (해석적인 방법을 사용한 통신해양기상위성의 위치유지)

  • Kim Young-Rok;Kim Hae-Yeon;Park Sang-Young;Lee Byoung-Sun;Park Jae-Woo;Choi Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.245-258
    • /
    • 2006
  • In this paper, an automation algorithm of analyzing and scheduling the station-keeping maneuver is presented for Communication, Ocean and Meteorological Satellite (COMS). The perturbation analysis for keeping the position of the geostationary satellite is performed by analytic methods. The east/west and north/south station-keeping maneuvers we simulated for COMS. Weekly east/west and biweekly north/south station-keeping maneuvers are investigated for a period of one year. Various station-keeping orbital parameters are analyzed. As the position of COMS is not yet decided at either $128.2^{\circ}E\;or\;116.0^{\circ}E$, both cases are simulated. For the case of $128.2^{\circ}E$, east/west station-keeping requires ${\Delta}V$ of 3.50m/s and north/south station-keeping requires ${\Delta}V$ of 52.71m/s for the year 2009. For the case of $116.0^{\circ}E,\;{\Delta}V$ of 3.86m/s and ${\Delta}V$ of 52.71m/s are required for east/west and north/south station-keeping, respectively. The results show that the station-keeping maneuver of COMS is more effective at $128.2^{\circ}E$.

우주환경변화가 천리안위성에 미치는 영향 I_기상탑재체

  • Gwon, Eun-Ju;Kim, Bang-Yeop
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.120.2-120.2
    • /
    • 2012
  • 천리안위성은 2010년 6월 발사되어 지구적도상공 약36,000km, 동경 128.2도에 위치하고 지구 자전 방향으로 지구와 같은 속도로 회전하며 24시간 한반도를 관측하는 정지궤도위성이다. 정지궤도위성은 높은 고도로 인하여 태양활동 변화에 따른 태양풍, 고에너지 전자 등에 의한 영향을 직접적으로 받는 환경에 놓여있다. 과거 사례들로부터 정지궤도위성의 오작동은 태양활동에 의해 다양한 현상으로 발생될 수 있다는 사실도 밝혀졌다. 본 연구에서는 2013년 태양활동 극대기를 대비하여 태양활동 변화가 천리안위성의 탑재체에 끼치는 영향에 대해 조사되었다. 천리안위성은 기상 해양관측을 위한 광학탑재체와 통신서비스를 위한 통신탑재체로 이루어져있다. 이 중 우리는 2011년에 발생된 X등급의 태양폭발 규모에 따라서 기상관측을 수행하는 기상탑재체 상태가 태양폭발이 없는 기간의 상태와 어느 정도 차이를 보이는지 분석하였다. 2011년에 발생된 경보는 3단계 10회, 4단계 2회로 발생빈도가 증가하는 추세이다. 4단계 경보의 태양폭발에도 천리안위성은 모든 부분에서 정상운영을 유지하고 있다. 이번연구를 통해 태양폭발 규모에 따른 기상탑재체의 영향 정도를 가시화하여 앞으로 발생 가능한 문제를 예측하고 대비함으로서 안정적인 위성운영을 도모하고자 한다.

  • PDF

Service Link Design for COMSAT Communication Channel (통신해양기상위성의 통신 서비스 링크 설계)

  • Oh, Dae-Ho;Yang, Woo-Jin;Kim, Young-Wan;Go, Nam-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1113-1116
    • /
    • 2005
  • Using COMSAT which provides multi-beam switching function, the optimal transmission channel environment which provides the high data rate communication are proposed in this paper. Also the link budget for communication transponder of COMSAT is designed. Based on the channel modeling for group delay, non-linear and gain flatness characteristics, the system performances which provide various data rate services were analyzed in Ka-band satellite channel. As the transmission data rate is increased, the degradation due to these channel characteristics is severely increased. The linear component of group delay and the AM-AM component of non-linear characteristics severely affect the system performance. To efficiently provide the various service via the same transmission system it is necessary to equalize the primary impairment factors. The optimum operating points of HDR satellite transmission system are implemented and operated by considering the analyzed results on channel characteristics.

  • PDF

Environment Simulation and Effect Estimation of Space Radiation for COMS Communication Payload (통신해양기상위성 통신 탑재체의 우주 방사선 환경 모사 및 영향 추정)

  • Kim, Seong-Jun;U, Hyeong-Je;Seon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.76-83
    • /
    • 2006
  • Space radiation environment for COMS is simulated by NASA AP8/AE8, JPL91 and NRL CREME models, respectively for trapped particle, solar proton and cosmic-ray. The radiation effects on electronic devices in communication payload are also estimated by using simulation results. Dose-depth curve and LET spectrum are calculated for estimating total ionizing dose(TID) effect and single event effect(SEE) respectively. Spherical sector method is applied to dose estimation at each position in the units of communication payload to consider shielding effect of platform and housing. Total ionizing dose at each position varies by 8 times through shielding effect under the same external space radiation environment.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

Establishment Status of the Korea Ocean Satellite Center and GOCI-Data Distribution System (해양위성센터 구축 현황 및 GOCI 자료배포시스템 소개)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Cho, Seong-Ick;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.367-370
    • /
    • 2009
  • 한국해양연구원에서는 2009년 발사 예정인 통신해양기상위성(COMS: Communication, Ocean and Meteorological Satellite)의 해색센서인 정지궤도 해양위성(GOCI: Geostationary Ocean Color Imager) 데이터의 수신, 처리, 배포를 위한 해양위성센터(KOSC: Korea Ocean Satellite Center)를 구축하고 있다. 2005년 "해양위성센터 구축사업"의 시작으로, 전파 수신 환경 등의 조건을 고려하여, 안산에 위치한 한국해양연구원 본원으로 해양위성센터의 위치를 최종 확정하여 구축을 진행하고 있다. 2009년 3월 현재 수신시스템(GDAS: GOCI Data Aquisition System), 자료전처리시스템(IMPS: Image Pre-processing System), 자료처리시스템(GDPS: GOCI Data Processing System), 자료관리 시스템(DMS: Data Management System), 통합감시제어시스템(TMC: Total Management & Controlling System), 기관간 자료교환시스템(EDES: External Data Exchange System) 등이 구축 완료되었고, 위성자료 배포시스템(DDS: Data Distribution System)을 구축하고 있다. 고용량 데이터의 원활한 전송을 위한 데이터센터를 비롯하여 사용자관점에서의 시스템 구축을 추진하고 있으며, 위성 발사 후 사용자 등록을 시작할 계획이다.

  • PDF