• 제목/요약/키워드: 통신해양기상위성(communication ocean meteorological satellite)

검색결과 77건 처리시간 0.017초

COMS(Communication, Ocean color & Meteorological Satellite) Meteorological Imager Interface Unit(MI2U) Design (통신해양기상위성의 기상 탑재체 접속장치 설계)

  • Chae, Tae-Byeong
    • Journal of Satellite, Information and Communications
    • /
    • 제1권2호
    • /
    • pp.38-44
    • /
    • 2006
  • The COMS(Communication, Ocean & Meteorological Satellite) is the geostationary satellite which will be performing three main objectives such as meteorological service, ocean monitoring and Ka-band satellite communications. In order to accomplish these missions, the COMS system needs to implement a specific electrical/mechanical interface functions which are requested by each payload units. This paper describes a on-board interface hardware design for COMS Meteorological Imager(MI). The Meteorological Imager Interface Unit(MI2U) achieves, through MIL-STD-15533 system bus, the interface between the Spacecraft Computer Unit(SCU) and the instrument which is dedicated to MI. MI2U provides a necessary power input to MI from +50V Power Supply Regulator(PSR), and allows adaptation of the specific payload interfaces and protocol to COMS spacecraft.

  • PDF

A Preliminary Performance Analysis of the Meteorological and Ocean Data Communication Subsystem in COMS (통신해양기상위성 기상해양데이터통신계의 예비 성능 해석)

  • Kim, Jung-Pyo;Yang, Gun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • 제1권2호
    • /
    • pp.25-31
    • /
    • 2006
  • The COMS (Communication, Ocean, and Meteorological Satellite) performing meteorological and ocean monitoring and providing communication service with meteorological, ocean and Ka-band payload in the geostationary orbit includes MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station and relaying the meteorological data processed on the ground to the end-user stations. MODCS comprises of two channels: SD channel which formats the raw data according to CCSDS recommendation, amplifies and transmits its signal to the ground station; MPDR channel which relays to the end-user stations the ground-processed meteorological data in the data format of LRIT/HRIT recommended by CGMS. This paper constructs the architecture of MODCS for transmitting and relating the observed data, and investigates that the key performance parameters have the required margin through the preliminary performance analyses.

  • PDF

System Design of COMS(Communication, Ocean and Meteorological Satellite) Propulsion System (통신해양기상위성 추진시스템 시스템설계)

  • Park Eung-Sik;Han Cho-Young;Chae Jong-Won;Bucknell S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.426-430
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite) is the first developed three-axis stabilization multi-function satellite on geostationary earth orbit(GEO) in korea, presently scheduled to be launched in 2008. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. In this paper, system design of propulsion system, basic functions and design requirement of components are described.

  • PDF

Conceptual Design of COMS Ground System for Meteorological and Oceanic Mission (통신해양기상위성의 기상 및 해양 임무 수행을 위한 지상국 개념설계)

  • Lim, Hyun-Su;Choi, Hae-Jin
    • Satellite Communications and Space Industry
    • /
    • 제12권1호통권27호
    • /
    • pp.115-121
    • /
    • 2004
  • 본 연구의 목적은 2008년 발사를 목표로 개발 중인 통신해양기상위성(COMS: Communication, Ocean and Meteorological Satellite) 1호의 해양/기상 임무를 수행을 지원할 지상 시스템의 개념 설계를 수행하는 것이다. 송수신 시스템 개발을 위한 사용자 요구사항 분석과 외국 정지궤도의 위성의 영상 전 처리 시스템에 대한 기법 분석이 이루어 졌으며, 이를 바탕으로 통신해양기상위성 송수신 시스템의 데이터 흐름도를 작성하였다. 통해기 지상 시스템은 신뢰성 있는 위성 운영과 자료처리 기술의 자립화를 위해 국내 기술로 자체 개발될 예정이다.

  • PDF

정지궤도 기상 영상기 MTF 특성 분석

  • Cho, Young-Min
    • Aerospace Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.182-189
    • /
    • 2003
  • Communication Ocean Meteorological Satellite(COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service is planned to be launched onto Geostationary Earth orbit (GEO) in 2008 according to the korea national space program, For the development of the meteorological payload of COMS, imager, the characteristics of Modulation Transfer Function (MTF) for GEO meteorological imager is investigated and the theoretical MTF limit is analyzed for each spectral channel of the imager in the both cases of a currently operating GEO instrument technology and an advanced GEO instrument technology under development. This study shows that MTF value can be considerably low in the infrared channels with longer wavelength than 10㎛ due to diffraction effect so that the MTF performance of long wavelength infrared channels should be paid attention to for the development of the imager.

  • PDF

Backup Site Operation Of COMS Image Data Acquisition And Control System (천리안위성 영상 수신 및 처리에 대한 백업 지상국 운영)

  • Cho, Young-Min;Kwon, Eun Joo
    • Journal of Satellite, Information and Communications
    • /
    • 제10권2호
    • /
    • pp.95-101
    • /
    • 2015
  • The backup site operation of the Image Data Acquisition and Control System (IDACS) for Communication Ocean Meteorological Satellite (COMS) is discussed in terms of the ground station configuration, image data processing, and the characteristics of backup activities for both the meteorological image data and the ocean image data. The well-performed backup operation of the COMS IDACS is also confirmed with the first three years normal operation results from April, 2011 to March, 2014. The operation results are analyzed through statistical approach to provide the achieved operational performance of the image data reception, preprocessing, and broadcast.

Characteristics of the Mission Planning for COMS Normal Operation (천리안위성 정규 운영에 대한 임무계획 특성)

  • Cho, Young-Min;Jo, Hye-Young
    • Aerospace Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.163-172
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2^{\circ}$ East longitude on the geostationary orbit and currently under normal operation service since April 2011. For the sake of the executions of the meteorological and the ocean mission as well as the satellite control and management, the satellite mission planning is daily performed. The satellite mission plans are sent to the satellite by the real-time operation and the satellite executes the missions as per the mission plans. In this paper the mission planning for COMS normal operation is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, and seasonal mission planning activities. The successful mission planning is also confirmed with the first one-year normal operation results.

Innovative Geostationary Communication and Remote Sensing Mutli-purpose Satellite Program in Korea-COMS Program

  • Baek, Myung-Jin;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • 제2권2호
    • /
    • pp.29-35
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of the Ka band Satellite Communication Payload, Meteorological Imager, and Geostationary Ocean Color Imager into a single spacecraft platform. In this paper, Korea's first innovative geostationary Communication, Ocean and Meteorological Satellite (COMS) program is introduced which is fully funded by Korean Government. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service. The Meteorological Imager mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The Geostationary Ocean Color Imager mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into one to meet the overall satellite requirements. In this paper, Ka band communication payload system is more highlighted.

  • PDF

An Analysis of Data Transmission Rate of HRIT/LRIT for COMS (통신해양기상위성의 HRIT/LRIT 데이터 전송률 분석)

  • Jung Sung-Chul;Seo Seok-Bae;Ahn Sang-Il;Baek Seon-Kyun
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.398-403
    • /
    • 2006
  • 2008년 발사를 목표로 개발되고 있는 통신해양기상위성(COMS : Communication, Ocean and Meteorological Satellite)의 기상 탑재체를 이용한 기상 관측 임무는 기상청 기상위성센터(가칭)의 고유 임무로서, 이는 기상탑재체에서 관측한 자료를 수신 처리하여 고품질의 영상과 분석 자료를 생산하여 기상 예보 업무에 활용하고, 위성을 통하여 국내외 사용자들에게 분배하는 것 등을 포함한다. 위성을 통한 기상 자료 서비스는 국내에서는 최초로 시도되는 것으로, 국제기상위성운영 기관들의 모임인 기상위성조정그룹회의(CGMS Coordination Group for Meteorological Satellites)에서 권고하는 High Rate Information Transmission/Low Rate Information Transmission(HRIT/LRIT)라는 특정 자료 형태를 사용하여 분배하게 된다. 따라서 본 논문에서는 CGMS에서 권고하는 CCSDS (Consultative Committee for Space Data Systems) 전송 규격과 일본의 MTSAT-1R(Multi-functional Transport Satellite) 위성 사용자 서비스 자료 형태를 참고하여 통신해양기상위성의 효과적인 기상자료 분배를 위한 HRIT/LRIT 데이터 전송률을 분석하여 보았다.

  • PDF

Earth Observation Mission Operation of COMS during In-Orbit Test (천리안위성 궤도상 시험의 지구 관측 임무 운영)

  • Cho, Young-Min
    • Journal of Satellite, Information and Communications
    • /
    • 제8권1호
    • /
    • pp.89-100
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on $128.2^{\circ}$ East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionalities and the performances of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The operation characteristics of meteorological mission and ocean mission are described and the mission planning for the COMS is discussed. The mission operation results during the COMS IOT are analyzed through statistical approach for the study of both the mission operation capability of COMS verified during the IOT and the satellite image reception capacity achieved during the IOT.