• Title/Summary/Keyword: 통계적 피로해석

Search Result 25, Processing Time 0.03 seconds

Development of a Fatigue Damage Model of Wideband Process using an Artificial Neural Network (인공 신경망을 이용한 광대역 과정의 피로 손상 모델 개발)

  • Kim, Hosoung;Ahn, In-Gyu;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.88-95
    • /
    • 2015
  • For the frequency-domain spectral fatigue analysis, the probability density function of stress range needs to be estimated based on the stress spectrum only, which is a frequency domain representation of the response. The probability distribution of the stress range of the narrow-band spectrum is known to follow the Rayleigh distribution, however the PDF of wide-band spectrum is difficult to define with clarity due to the complicated fluctuation pattern of spectrum. In this paper, efforts have been made to figure out the links between the probability density function of stress range to the structural response of wide-band Gaussian random process. An artificial neural network scheme, known as one of the most powerful system identification methods, was used to identify the multivariate functional relationship between the idealized wide-band spectrums and resulting probability density functions. To achieve this, the spectrums were idealized as a superposition of two triangles with arbitrary location, height and width, targeting to comprise wide-band spectrum, and the probability density functions were represented by the linear combination of equally spaced Gaussian basis functions. To train the network under supervision, varieties of different wide-band spectrums were assumed and the converged probability density function of the stress range was derived using the rainflow counting method and all these data sets were fed into the three layer perceptron model. This nonlinear least square problem was solved using Levenberg-Marquardt algorithm with regularization term included. It was proven that the network trained using the given data set could reproduce the probability density function of arbitrary wide-band spectrum of two triangles with great success.

Analysis on Correlation between AE Parameters and Stress Intensity Factor using Principal Component Regression and Artificial Neural Network (주성분 회귀분석 및 인공신경망을 이용한 AE변수와 응력확대계수와의 상관관계 해석)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Jeong, Jung-Chae;Park, Phi-Iip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.80-90
    • /
    • 2001
  • The aim of this study is to develop the methodology which enables to identify the mechanical properties of element such as stress intensity factor by using the AE parameters. Considering the multivariate and nonlinear properties of AE parameters such as ringdown count, rise time, energy, event duration and peak amplitude from fatigue cracks of machine element the principal component regression(PCR) and artificial neural network(ANN) models for the estimation of stress intensity factor were developed and validated. The AE parameters were found to be very significant to estimate the stress intensity factor. Since the statistical values including correlation coefficients, standard mr of calibration, standard error of prediction and bias were stable, the PCR and ANN models for stress intensity factor were very robust. The performance of ANN model for unknown data of stress intensity factor was better than that of PCR model.

  • PDF

Reliability based optimization of spring fatigue design problems accounting for scatter of fatigue test data (피로시험 데이터의 산포를 고려한 스프링의 신뢰성 최적설계)

  • An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1314-1319
    • /
    • 2008
  • Fatigue reliability problems are nowadays actively considered in the design of mechanical components. Recently, Dimension Reduction Method using Kriging approximation (KDRM) was proposed by the authors to efficiently calculate statistical moments of the response function. This method, which is more tractable for its sensitivity-free nature and providing the response PDF in a few number of analyses, is adopted in this study for the reliability analysis. Before applying this method to the practical fatigue problems, accuracies are studied in terms of parameters of the KDRM through a number of numerical examples, from which best set of parameters are suggested. In the fatigue reliability problems, good number of experimental data are necessary to get the statistical distribution of the S-N parameters. The information, however, are not always available due to the limited expense and time. In this case, a family of curves with prediction interval, called P-S-N curve, is constructed from regression analysis. Using the KDRM, once a set of responses are available at the sample points at the mean, all the reliability analyses for each P-S-N curve can be efficiently studied without additional response evaluations. The method is applied to a spring design problem as an illustration of practical applications, in which reliability-based design optimization (RBDO) is conducted by employing stochastic response surface method which includes probabilistic constraints in itself. Resulting information is of great practical value and will be very helpful for making trade-off decision during the fatigue design.

  • PDF

A Statistical Analysis of Evacuation Time based on Evacuee's Physical Conditions in a High-rise Building (재실자의 신체적 조건에 따른 초고층 건축물 피난시간의 통계적 해석)

  • Jeon, Eun-Myeong;Choi, Jun-Ho;Seo, Bo-Youl;Hong, Won-Hwa
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.261-266
    • /
    • 2010
  • 본 연구에서는 초고층 건축물에서 피난을 할 때 피난자에게 작용하는 신체 조건과 수직적 이동방향에 따른 피난시간을 분석하였다. 초고층 건축물에서의 피난은 특성상 많은 계단을 통해 이동해야 하므로 피난자는 심리적 행동보다 주로 신체적 능력에 의존하는데, 이 때 피난자의 피로도는 계단수가 올라갈수록 급격히 상승하게 된다. 즉, 총 피난시간은 단순히 피난자의 평지 보행속도에 비례하여 증감할 뿐만 아니라 체력 등의 다른 신체적 영향 또한 받게 된다. 따라서 본 연구에서는 피난자의 신체조건을 고려한 피난예상시간을 산정하기 위해 필요한 조건들을 연구하고자 실물 실험에서의 상 하향의 보행방향과 참가자들의 신체조건에 따른 피난시간을 통계적으로 분석하였다.

  • PDF

Subject Test Using Electroencephalogram According to Variation of Autostereoscopic Image Quality (무안경 입체영상의 화질변화에 따른 뇌파 기반 사용자 반응 분석)

  • Moon, Jae-Chul;Hong, Jong-Ui;Choi, Yoo-Joo;Suh, Jung-Keun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.195-202
    • /
    • 2016
  • There have been many studies on subject tests for 3D contents using 3D glasses, but there is a limited research for 3D contents using autostereoscopic display. In this study, we investigated to assess usability of electroencephalogram (EEG) as an objective evaluation for 3D contents with different quality using autosteroscopic display, especially for lenticular lens type. The image with optimal quality and the image with distorted quality were separately generated for autostereosopic display with lenticular lens type and displayed sequentially through lenticular lens for 26 subjects. EEG signals of 8 channels from 26 subjects exposed to those images were detected and correlation between EEG signal and the quality of 3D images were statistically evaluated to check differences between optimal and distorted 3D contents. What we found was that there was no statistical significance for a wave vibration, however b wave vibration shows statistically significant between optimal and distorted 3D contents. b wave vibration observed for the distorted 3D image was stronger than that for the optimal 3D image. This results suggest that subjects viewing the distorted 3D contents through lenticular lens experience more discomfort or fatigue than those for the optimum 3D contents, which resulting in the greater b wave activity for those watching the distorted 3D contents. In conclusion, these results confirm that electroencephalogram (EEG) analysis can be used as a tool for objective evaluation of 3D contents using autosteroscopic display with lenticular lens type.