5G 이동무선통신에서 요구되는 증가된 데이터 속도를 제공하기 위한 핵심적인 기술 축은 대규모 어레이를 활용하는 MIMO 전송을 통한 주파수 효율의 향상이다. MIMO 전송을 위해서는 CSI-RS (channel state information-reference signaling)를 이용하는 채널 추정 및 추정 결과에 적합한 빔포밍이 필요하며, 따라서 빔포밍 벡터를 정의하는 코드북의 설계는 매우 중요한 이슈이다. 본 논문에서는 공간채널모델을 이용하여 생성된 채널의 통계적인 특성을 활용하여 DFT (discrete Fourier transform) 행렬 기반 다중 랭크 코드북의 설계 방안을 제안하였다. 제안 방식은 인접한 안테나 원소 간 위상차의 분포와 전송 레이어 별 선택되는 코드벡터의 특징을 고려하여 PMI (precoding matrix indicator)의 구조 변경을 하였으며, LTE (long-term evolution) 시스템에서 사용 중인 3GPP 표준 코드북과의 성능 비교를 통하여 제안 방식의 이득을 산출하고 검증하였다.
오늘날 웹의 비약적인 성장으로 텍스트, 이미지, 비디오, 그리고 사운드 등의 다양한 데이터 형식의 많은 정보가 축적되었으며 날마다 늘어나고 있다. 이들 정보의 효율적 검색을 위해 많은 연구가 이루어졌으며, 특히 텍스트 문서의 효율적인 검색을 위해 확률을 이용한 방법, 통계적인 기법을 이용한 방법, 벡터 유사도를 이용한 방법, 베이지안 자동문서 분류 방법 등이 제안되었다. 그러나 이러한 기존의 방법들은 문서의 특징을 정확하게 반영할 수 없고, 의미적 검색이 이루어지지 않는 단점을 가지고 있다. 이에 본 논문은 문서를 미리 분류하는 기존의 방법을 개선하기 위해, 사용자가 원하는 문서와 비슷한 문서를 의미적으로 찾아내기 위한 방법을 제안한다. 본 방법론은 문서의 내용을 의미적인 계층으로 표현하고 중요 도메인에 가중치를 두어 각 문서들의 계층들의 도메인 비중과 도메인 내의 개념 일치도를 이용하여 문서들 간에 유사도를 구한다.
본 논문에서는 영상의 범주화에 근거한 개선된 스테그분석 방법을 제안한다. 대부분의 스테그분석 방법은 영상이 가지는 고유한 특성과는 무관하게 영상의 전역적 특징을 나타내는 통계적 모멘트에 기반하여 특징 벡터를 추출한다. 그러나 모멘트에 근거한 방법은 서로 다른 복잡도의 영상에 사용됨으로써 스테그분석의 성능 저하를 야기시키게 된다. 본 논문에서는 8비트 영상을 상위 4 비트 및 하위 4 비트 평면으로 분해하고, 이들 간의 상관계수에 따라 영상을 두 클래스로 범주화한다. 이와같이 범주화된 영상들은 각각에 대하여 독립적으로 스테그분석을 시행할 수 있다. 본 논문의 방법은 영상의 범주에 따라 독립적으로 스테그분석을 수행함으로써 통계적 모멘트를 사용한 방법이 가지는 단점을 완화할 수 있다. 제안된 스테그분석 방법의 성능을 평가하기 위해 기존의 잘 알려진 네 가지 스테그분석 방법과 비교하였으며, 실험 결과 기존의 방법에 비해 더 높은 검출율을 보임을 확인할 수 있었다.
음성신호의 분석으로부터 유도되는 직교인자는 화자의 개인성을 많이 포함하고 있으므로, 최근 많은 연구자들이 이것을 이용한 통계적 처리방법으로 화자인식을 수행하여 좋은 화자인식율을 얻고 있다. 그러나 이러한 방법들은 아직 음성의 발성속도나 시간적 동특성으로 인해서 발생하는 문제점을 갖고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해서 음성분석의 한 방법인 Karhunen-Loeve 직교 변환에 의해서 추출한 직교인자를 화자인식에 이용하는 방법에 DTW법을 결합하는 두가지 기법을 제안하였다. 첫째는 직교인자를 특징벡터로 하여 DTW법을 적용하고, 둘째는 직교인자를 최적경로에 이용하는 기법이다. 이들 두 기법에 의한 화자인식 결과와 직교인자의 통계적 처리에 의한 종래의 화자인식방법의 결과를 비교하였다. 사용된 직교인자는 음성신호에서 선형예측계수와 부분자기상관계수를 각각 추출하여 위의 화자인식방법에 각각 적용하였다. 이를 실험한 결과, 선형예측계수로 부터 얻은 직교인자를 최적경로를 이용한 기법에 적용하는 경우 88.6%의 가장 높은 인식율을 얻었다.
캐리커처의 일반적인 의미는 어떤 사람이나 사물의 특징을 추출하여 익살스럽게 풍자한 그림이나 글이다. 다시 말해, 캐리커처는 사람의 얼굴에서 특징을 잡아 과장하거나 왜곡하여 그린 데생이라고 한다. 컴퓨터를 이용한 기존의 캐리커처 제작방법으로는, 입력 이미지 좌표의 통계적인 차이값을 이용하는 PICASSO System 방법[1], 제작자의 애매한 느낌을 퍼지 논리를 이용하여 표현하는 방법, 이미지를 와핑하는 방법, 여러 단계의 벡터 필드 변환을 이용하는 방법등이 연구되어 왔다. 본 논문에서는 실시간 또는 준비된 영상을 입력으로 받아 저장한 후, 네 단계의 과정으로 처리한 후 최종적으로 캐리커처된 이미지를 생성하게 된다. 각 단계별 처리 내용으로는 첫번째 단계에서는 영상에서 얼굴을 검출하고 두번째 단계에서는 특정 얼굴부위의 기하학적 정보를 좌표값으로 추출한다. 세번째 단계에서는 전 단계에서 얻은 좌표값으로 로컬 와핑 기법을 이용하여 영상을 변환한다. 네 번째 단계에서는 변형된 영상으로 퍼지 논리를 이용하여 보다 개선된 윤곽선 이미지로 변환하여 캐리커처 이미지를 얻는다. 본 논문에서는 영상 인식, 변환 및 윤곽선 검출 및 둥의 여러 가지 영상 처리 기법을 이용하여 기존의 캐리커처 제작 방식보다 간단하고, 복잡한 연산 과정이 없는 캐리커처 제작 시스템을 구현하였다.
본 논문에서는 객체의 관심점(interest points)에 대한 지역 특징 기술자를 이용하여 이미지나 동영상에서 다수의 관심 객체를 효과적으로 인식하고 추적하기 위한 기법을 제안한다. 이를 위해 먼저 대상이 되는 객체를 포함하는 다양한 이미지를 수집하고 SURF 알고리즘을 적용하여 객체의 관심점과 그들에 대한 지역 특징 기술자를 생성한다. 지역 특징에 대한 통계적인 분석을 통하여 관심점들 중에서 해당 객체의 특성을 가장 잘 표현하는 대표점(representative points)을 선택하고 이를 바탕으로 이미지에 존재하는 객체를 인식한다. 또한, 지역 특징 기술자의 정합을 응용하여 각 SURF 지점들의 움직임 벡터를 생성하고 이를 기반으로 실시간으로 객체를 추적한다. 제안하는 기법은 모든 객체를 독립적으로 다루기 때문에, 여러 개의 객체를 동시에 인식하고 추적할 수 있다. 다양한 실험을 통해, 동영상에서 객체의 존재 여부 및 종류를 신속하게 판별하고 관심 객체의 추적을 효과적으로 수행할 수 있음을 보인다.
이미지에서 문자 추출은 영상을 이해하기 위한 가장 기초적이고 중요한 문제이다. 본 논문에서는 문자의 획 특징을 이용하는 통계적인 방법으로 문자 영역을 검증하는 방법을 제안한다. 제안하는 방법은 $16\times16$ 크기의 텍스트와 비텍스트 이미지를 웨이블릿(wavelet) 변환하여 문자의 획과 방향성을 표현하는 35차원의 특징을 추출한다. 추출된 특징 중 변별력이 높은 특징만을 선택하여 SVM(Support Vector Machine) 분류기를 구성한다. 분류기론 이용하여 $16\times16$크기의 윈도우로 검증 영역을 스캔하면서, 각각의 윈도우를 텍스트와 비텍스트로 분류하고 최종적으로 검증 영역의 텍스트 여부를 결정한다. 제안한 방법을 적용함으로써 텍스트와 유사하여 구별하기 어려운 비텍스트 영역을 검증할 수 있었다.
본 논문에서는 얼굴 영상으로부터 자동으로 사람의 감정을 인식하는 효과적인 방법을 제안한다. 얼굴 표정으로부터 감정을 파악하기 위해서는 카메라로부터 얼굴영상을 입력받고, ASM (active shape model)을 이용하여 얼굴의 영역 및 얼굴의 주요 특징점을 추출한다. 추출한 특징점으로부터 각 장면별로 49차의 크기 및 변이에 강인한 특징벡터를 추출한 후, 통계기반 패턴분류 방법을 사용하여 얼굴표정을 인식하였다. 사용된 패턴분류기는 Naive Bayes, 다중계층 신경회로망(MLP; multi-layer perceptron), 그리고 SVM (support vector machine)이며, 이중 SVM을 이용하였을 때 가장 높은 최종 성능을 얻을 수 있었으며, 6개의 감정분류에서 50.8%, 3개의 감정분류에서 78.0%의 인식결과를 보였다.
최근 영상처리기술과 컴퓨터과학의 발달로 연령변화에 따른 얼굴형상 분류 방법은 일반적인 주제가 되었다. 사람의 연령별 얼굴분류는 생물학적 유전자와 오랜 생활의 식습관으로 인하여 얼굴 형상이 변하기 때문에 통계적 형상만으로 예측하기란 쉽지 않다. 본 논문에서는 Gobor 특징과 fuzzy SVM 기법을 이용하여 연령대별 얼굴분류 기법을 제안하였다. Gabor 웨이블릿 함수는 얼굴의 특징벡터를 구하기 위하여 사용되고 연령대별 얼굴형상 구분이 애매모호한 문제를 해결하기 위해 fuzzy SVM 기법을 이용하여 연령별 소속 함수를 정의하였다. 제안한 방법으로 연령별 소속함수에 따른 얼굴 분류 실험을 수행하였고 제안한 방법의 타당성을 확인하였다.
우울증은 가장 유병율이 높은 '기분 장애'(mood disorder)의 일종으로, 약 20%의 인구가 일생동안 우울증 증상을 한번쯤 경험한다. 이러한 우울증은 크게 '우울 장애'(major depressive disorder)와 '양극성 장애'(bipolar disorder)로 구분된다. 환자의 질병 분류에 따라 사용되는 약과 의학적 처방이 다르기 때문에, 우울증 환자의 빠르고 정확한 진단 및 분류는 매우 중요하다. 기존의 다면성 인성검사(MMPI)와 같은 통계적인 방법이 우울증 환자의 진단을 위해 사용돼 왔으나, 장시간의 집중력을 요구하기 때문에 집중력 저하의 특징을 보이는 우울증 환자들에게 적용하는데 어려움이 있다. 이 논문에서는 이러한 문제를 해결하고자, 빠른 측정이 가능하고 측정동안 집중력을 요하지 않는 EEC 데이터의 분석을 통해 우울증 환자의 분류를 시도하였다. EEG 채널 간 정보 흐름에서의 비선형성과 근사 엔트로피(approximate entropy)의 크기를 속성(attribute)으로 사용하여 데이터 마이닝 기법 중 의사 결정 트리(decision tree)와 가능성 기반 서포트 벡터머신(possibilistic support vector machines) 통해 분석을 수행하였다. 30명의 주요 우울장애환자와 24명의 양극성 장애 환자를 통해 위의 분석을 수행한 결과 의사 결정 트리의 경우 85.19% 의 정확도를 가지며 분류해냈고, 가능성 기반 서포트 벡터머신의 경우 77.78%의 정확도를 보여줬다. 본 연구는 가능성 기반 서포트 벡터 머신 분석이 우울증 환자는 진단하고 분류하는데 유용하게 적용될 수 있는 가능성을 제시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.