• Title/Summary/Keyword: 통계적 태도

Search Result 272, Processing Time 0.018 seconds

Comparison of the Operative Results of Performing Endoscopic Robot Assisted Minimally Invasive Surgery Versus Conventional Cardiac Surgery (수술용 내시경 로봇(AESOP)을 이용한 최소 침습적 개심술과 동 기간에 시행된 전통적인 개심술의 결과에 대한 비교)

  • Lee, Young-Ook;Cho, Joon-Yong;Lee, Jong-Tae;Kim, Gun-Jik
    • Journal of Chest Surgery
    • /
    • v.41 no.5
    • /
    • pp.598-604
    • /
    • 2008
  • Background: The improvements in endoscopic equipment and surgical robots has encouraged the performance of minimally invasive cardiac operations. Yet only a few Korean studies have compared this procedure with the sternotomy approach. Material and Method: Between December 2005 and July 2007, 48 patients (group A) underwent minimally invasive cardiac surgery with AESOP through a small right thoracotomy. During the same period, 50 patients (group B) underwent conventional surgery. We compared the operative time, the operative results, the post-operative pain and the recovery of both groups. Result: There was no hospital mortality and there were no significant differences in the incidence of operative complications between the two groups. The operative $(292.7{\pm}61.7\;and\;264.0{\pm}47.9min$, respectively; p=0.01) and CPB times ($128.4{\pm}37.6\;and\;101.7{\pm}32.5min$, respectively; <0.01) were longer for group A, whereas there was no difference between the aortic cross clamp times ($82.1{\pm}35.0\;and\;87.8{\pm}113.5min$, respectively; p=0.74) and ventilator times ($18.0{\pm}18.4\;and\;19.7{\pm}9.7$ hr, respectively; p=0.57) between the groups. The stay on the ICU $(53.2{\pm}40.2\;and\;72.8{\pm}42.1hr$, respectively; p=0.02) and the hospitalization time ($9.7{\pm}7.2\;and\;14.8{\pm}11.9days$, respectively; p=0.01) were shorter for group A. The Patients in group B had more transfusions, but the difference was not significant. For the overall operative intervals, which ranged from one to four weeks, the pair score was significantly lower for the patients of group A than for the patients of group B. In terms of the postoperative activities, which were measured by the Duke Activity Scale questionnaire, the functional status score was clearly higher for group A compared to group B. The analysis showed no difference in the severity of either post-repair of mitral ($0.7{\pm}1.0\;and\;0.9{\pm}0.9$, respectively; p=0.60) and tricuspid regurgitation ($1.0{\pm}0.9\;and\;1.1{\pm}1.0$, respectively; p=0.89). In both groups, there were no valve related complications, except for one patient with paravalvular leakage in each group. Conclusion: These results show that compared with the median sternotomy patients, the patients who underwent minimally invasive surgery enjoyed significant postoperative advantages such as less pain, a more rapid return to full activity, improved cosmetics and a reduced hospital stay. The minimally invasive surgery can be done with similar clinical safety compared to the conventional surgery that's done through a median sternotomy.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.