• Title/Summary/Keyword: 통계적상세화

Search Result 52, Processing Time 0.029 seconds

Climate and geomorphic internal variabilities (기후 변화 및 침식 현상에서의 내적변동성)

  • Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.39-39
    • /
    • 2016
  • 기후 변화의 수자원 영향 평가에서 전지구모형이 갖는 불확실성이나 이산화탄소 배출 등의 시나리오별 불확실성에 대해서는 많은 연구가 진행되어져 왔으나, 외부의 변화가 아닌 지구 시스템상의 내부 변화에 대한 자연적인 변동성에 대해서는 상대적으로 연구가 미흡한 상태이다. 대표적인 내적 변동성의 예시로 엘리뇨 또는 라니뇨 현상을 들 수 있으며, 일정 영역 해수의 온도 변화에 따른 순환정도가 전세계적으로 큰 영향 (태풍, 가뭄, 홍수 등)을 주는 것을 확인할 수 있었다. 유역에서의 침식 및 퇴적 현상에서도 기후변화에서와 비슷한 내적변동성의 영향이 관찰되어지나, 과거의 대부분의 연구는 외적변동성의 영향에만 집중되어 왔다. 가장 빈번하게 발생하는 예로, 토양 표면의 미묘한 변화 (aggregation, dispersion, shielding, crusting 등)때문에 같은 양의 강우 또는 유출이 발생하는 경우라도 같은 양의 침식량이 발생하지 않는 현상을 들 수 있다. 여기에서 다루어지는 침식량의 '다름'은 같은 지역에서라도 적게는 수십배에서 크게는 수백배까지 예측량이 다를 수 있음을 뜻한다. 이러한 다름이 그동안 수자원/지질학을 연구하는 학자 및 실무자로 하여금 수치모델을 적용하고 예측하는 것을 어렵게 했던 원인이 되었다. 본 연구에서는 기후 변화가 가져올 수자원의 영향 평가를 수행할 것이다. 관심있는 기후변화 변수로서 기온 및 강수량을 시간단위로 상세화할 것이며, 변화한 기후의 영향을 평가할 수자원의 현상으로는 증발산, 토양수분량, 유출량, 하천에서의 수심 및 첨두량, 침식량 등을 고려할 것이다. 물리현상을 모의하기 위해, 유역기반의 수리, 수문, 침식 및 퇴적 현상을 동시에 계산할 수 있는 통합모델을 개발하였고 적용하였다. 여기에서 얻은 결과로부터 내적 변동성이 수자원 현상에 미치는 불확실성을 확률통계적인 기법을 이용하여 정량화할 수 있을 것이다.

  • PDF

A Study on Spatial Downscaling of Satellite-based Soil Moisture Data (토양수분 위성자료의 공간상세화에 관한 연구)

  • Shin, Dae Yun;Lee, Yang Won;Park, Mun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.414-414
    • /
    • 2017
  • 토양수분은 지면환경에서 일어나는 수문 및 에너지 순환을 이해하는 데 있어 중요한 기상인자이다. 토양수분 현장관측은 땅속에 매설된 센서에 의해 상당히 정확하게 이루어지만, 관측점 수가 충분치 않아 공간적 연속성을 확보하지 못하는 어려움이 존재한다. 이에 광역적 및 연속적 관측이 가능한 마이크로파 위성센서가 토양수분 정보 획득을 위한 보조수단으로서 그 중요성이 부각되고 있다. 마이크로파 위성센서는 구름 등 기상조건의 제약을 받지 않으며, 1978년 이래 현재까지 여러 위성에 의해 25 km 및 10 km 해상도의 전지구 토양수분자료가 생산되어 왔다. 마이크로파 센서를 이용한 토양수분자료는 동일지점에 대하여 하루 2회 정도 산출되므로 적절한 시간분해능을 가지지만, 공간해상도가 최고 10 km로서 지역규모의 수문분석에 적용하기에는 충분치 않다. 이러한 토양수분자료의 공간해상도 문제 해결을 위하여 다양한 지면환경요소를 활용한 통계적 다운스케일링이 대안으로 제시되었다. 최근의 선행연구들은 대부분 방정식을 이용한 결합모형을 통해 통계적 다운스케일링을 수행하였는데, 회귀식과 같은 선형결합뿐 아니라 신경망이나 기계학습 등의 비선형결합에서도, 불가피하게 발생할 수밖에 없는 잔차(residual)로 인하여 다운스케일링 전후의 공간분포 패턴이 달라져버리는 문제를 안고 있었다. 회귀분석에 잔차의 공간내삽을 결합시킨 회귀크리깅(regression kriging)은 잔차보정을 통해 이러한 문제를 해결함으로써 다운스케일링 전후의 공간분포 일관성을 보장하는 기법이다. 이 연구에서는 회귀크리깅을 이용하여 일자별 AMSR2(Advanced Microwave Scanning Radiometer 2) 토양수분 자료를 10 km에서 1 km 해상도로 다운스케일링하고, 다운스케일링 전후의 자료패턴 일관성을 평가한다. 지면온도(LST), 지면온도상승률(RR), 식생온도건조지수(TVDI)는 일자별로 DB를 구축하였고, 식생지수(NDVI), 수분지수(NDWI), 지면알베도(SA)는 8일 간격으로 DB를 구축하였다. 이러한 8일 간격의 자료를 일자별로 변환하기 위하여 큐빅스플라인(cubic spline)을 이용하여 시계열내삽을 수행하였다. 또한 상이한 공간해상도의 자료는 최근린법을 이용하여 다운스케일링 목표해상도인 1 km에 맞도록 변환하였다. 우선 저해상도 스케일에서 추정치를 산출하기 위해서는 저해상도 픽셀별로 이에 해당하는 복수의 고해상도 픽셀을 평균화하여 대응시켜야 하며, 이를 통해 6개의 설명변수(LST, RR, TVDI, NDVI, NDWI, SA)와 AMSR2 토양수분을 반응변수로 하는 다중회귀식을 도출하였다. 이식을 고해상도 스케일의 설명변수들에 적용하면 고해상도 토양수분 추정치가 산출되는데, 이때 추정치와 원자료의 차이에 해당하는 잔차에 대한 보정이 필요하다. 저해상도 스케일로 존재하는 잔차를 크리깅 공간내삽을 통해 고해상도로 변환한 후 이를 고해상도 추정치에 부가해주는 방식으로 잔차보정이 이루어짐으로써, 다운스케일링 전후의 자료패턴 일관성이 유지되는(r>0.95) 공간상세화된 토양수분 자료를 생산할 수 있다.

  • PDF

Production of Digital Climate Maps with 1km resolution over Korean Peninsula using Statistical Downscaling Model (통계적 상세화 모형을 활용한 한반도 1km 농업용 전자기후도 제작)

  • Jina Hur;Jae-Pil Cho;Kyo-Moon Shim;Sera Jo;Yong-Seok Kim;Min-Gu Kang;Chan-Sung Oh;Seung-Beom Seo;Eung-Sup Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.404-414
    • /
    • 2023
  • In this study, digital climate maps with high-resolution (1km, daily) for the period of 1981 to 2020 were produced for the use as reference data within the procedures for statistical downscaling of climate change scenarios. Grid data for the six climate variables including maximum temperature, minimum temperature, precipitation, wind speed, relative humidity, solar radiation was created over Korean Peninsula using statistical downscaling model, so-called IGISRM (Improved GIS-based Regression Model), using global reanalysis data and in-situ observation. The digital climate data reflects topographical effects well in terms of representing general behaviors of observation. In terms of Correlation Coefficient, Slope of scatter plot, and Normalized Root Mean Square Error, temperature-related variables showed satisfactory performance while the other variables showed relatively lower reproducibility performance. These digital climate maps based on observation will be used to downscale future climate change scenario data as well as to get the information of gridded agricultural weather data over the whole Korean Peninsula including North Korea.

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.85-94
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF

Drought Outlook using APCC MME Seasonal Prediction Information (APCC MME 계절예측정보를 이용한 가뭄전망)

  • Kang, Boo-Sik;Moon, Su-Jin;Sohn, Soo-Jin;Lee, Woo-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1784-1788
    • /
    • 2010
  • APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 형태의 계절예측정보를 이용하여 3개월 가뭄전망을 수행하였다. APCC MME는 기후예측모형이 가지는 불확실성을 최소화하기 위한 방법으로, 아시아 태평양 지역 내 9개 회원국 16개 기관 21개 기후모형의 계절예측정보를 활용하여, 개별 모형이 가지는 계통오차(Systematic error)를 앙상블 기법을 통하여 상쇄함으로써 최적의 예측자료를 도출한다. 또한, 기후예측 모형이 예측한 대기순환장은 관측 지점변수와 경험적 통계적 관련성을 가지므로, 이를 바탕으로 상세지역의 이상기후에 대한 정보를 도출할 수 있다. 본 연구에서는 가뭄 관리 및 전망을 위한 입력 자료로서, 기상전문 기관인 APEC 기후센터 (APEC Climate Center, APCC)에서 제공하는 전구 규모의 기온 및 강수 전망자료를 기상청 산하 59개 지점의 전망자료로 통계적 규모 축소화 기법을 통해 3개월 예보를 실시하였다. APCC 계절예측자료를 가뭄모니터링시스템의 자료입력 포맷에 따라 적절히 가공한 뒤, 가뭄 관리 및 전망을 위하여 SPI(Standard Precipitation Index) 및 PDSI(Palmer Drought Severity Index)지수의 입력자료로 사용하여 SPI 및 PDSI 지수를 산정하였다. 또한 분위사상법(Quantile Mapping)을 이용하여 총 59개 지점의 과거 월평균 관측값과 최근 2009년에 대한 모의값의 누적확률분포값을 계산하고 모의값의 확률분포를 관측값의 확률분포에 사상시켜 가뭄 전망을 위한 기상변수의 오차를 보정하고자 하였다. 이러한 계절예측정보를 이용하여 가뭄 전망에 대한 신뢰도가 높아진다면, 사전예방 및 피해완화로 가뭄상황에 대한 신속한 대처 및 피해의 경감이 이루어질 수 있을 것이다.

  • PDF

Correlation Analysis between Climate Indices and Inflow on Multi-Purpose Dam Watersheds in Nakdong River Basin (낙동강 유역 다목적댐 기후지수와 댐 유입량의 상관성 분석)

  • Kim, Jung Min;Park, Jin Hyeog;Jang, Suhyung;Kang, Hyun woong;Hwang, Man Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.408-408
    • /
    • 2017
  • 기후변화에 따른 극한 기후의 시 공간적 변동성과 패턴의 이상변화가 가속화되고 있으며, 이에 따른 물 순환 특성의 변화는 이수, 치수, 환경 그리고 친수 등 다양한 분야에서도 예측할 수 없는 결과를 초래하고 있다. 특히, 치수 및 이수 등 국내 수자원 관리의 대부분을 담당하고 있는 다목적댐 운영에서도 기후변화에 따른 유입량의 불확실성 증가로 안정적인 용수공급에 대한 어려움이 점차 증가하고 있는 추세이다. 유역 내의 수문학적 반응은 기상 및 지표 수문 인자의 물리적 상호메카니즘에 의해 발생하게 된다. 특히, 강우, 기온, 습도, 바람 등 기상학적 인자들은 유역 내의 수문 변동성에 직 간접적으로 영향을 주는 대표적인 인자이며, 이들 기상인자의 변동 특성을 반영하기 위한 기후지수(Climate Index, CI)는 지표수문인자인 유출과의 상관관계 분석에 유용하게 활용될 수 있다. 본 연구에서는 낙동강 유역 다목적댐을 대상으로 AR5 RCP 시나리오 기반의 기상인자에 대한 기후지수(CI)를 산정하고 다목적댐 유입량과의 상관성을 분석하였다. 대상유역의 기상 및 유입량 관측자료(1976-2005)는 기상청과 국가수자원관리종합정보시스템(WAMIS)를 이용하였으며, AR5 RCP 시나리오 기반의 유입량 자료(2005-2099)는 통계적 기법(QDM)으로 상세화된 기상자료를 입력인자로 수문모형(PRMS)을 통해 산정하였다. 또한, 기후지수(CI)와 유출지수(Standardized Streamflow Index, SSI)의 상관성 분석을 위해 Pearson 적률상관 분석방법을 적용하였으며, 통계적 유의성 검증은 Student t 검정방법을 적용하였다. 본 연구의 방법론과 결과는 기후변화에 따른 다목적댐 안정적인 용수공급을 위한 다양한 기술개발 시 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

A Study on Statistical Downscaling for Projection of Future Temperature Change simulated by ECHO-G/S over the Korean Peninsula (한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구)

  • Shin, Jinho;Lee, Hyo-Shin;Kwon, Won-Tae;Kim, Minji
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.107-125
    • /
    • 2009
  • Statistical downscaled surface temperature datasets by employing the cyclostationary empirical orthogonal function (CSEOF) analysis and multiple linear regression method are examined. For evaluating the efficiency of this statistical downscaling method, monthly surface temperature of the ECMWF has been downscaled into monthly temperature having a fine spatial scale of ~20km over the Korean peninsula for the 1973-2000 period. Monthly surface temperature of the ECHOG has also been downscaled into the same spatial scale data for the same period. Comparisons of temperatures between two datasets over the Korean peninsula show that annual mean temperature of the ECMWF is about $2^{\circ}C$ higher than that of the ECHOG. After applying to the statistical downscaling method, the difference of two annual mean temperatures reduces less than $1^{\circ}C$ and their spatial patterns become even close to each other. Future downscaled data shows that annual temperatures in the A1B scenario will increase by $3.5^{\circ}C$ by the late 21st century. The downscaled data are influenced by the ECHOG as well as observation data which includes effects of complicated topography and the heat island.

A Study on Reconstruction of Degraded Signal using Wavelet Transform (웨이브렛 변환을 이용한 훼손된 신호의 복원에 관한 연구)

  • Kim Nam-Ho;Bae Sang-Bum;Ryu Ji-Goo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Degradation is generated by several causes in the process of digitalization or transmission of data. And its essential cause is noise. Therefore, researches for wavelet-based methods which reconstruct signal degraded by noise have continued. In AWGN(addtive white gaussian noise) environment, the general trend for denoising is to use the thresholding method. Reconstructed signal includes a lot of noise because these methods only consider statistical characteristic regarding noise. In this paper, we present a new method which uses the cumulation of wavelet detail coefficients. As a result, reconstruction of edges and denoising performance are improved. Also we compare existing methods using SNR(signal-to-noise ratio) as the standard of judgement of improvemental effect.

  • PDF

An Hourly Extreme Rainfall Outlook Using Climate Information (기상인자를 활용한 시단위 극치강우량 전망)

  • Kim, Yong-Tak;Hong, Min;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.14-14
    • /
    • 2018
  • 세계의 여러 국가에서 과거 발생했던 강수의 통계적 특성에서 벗어나는 극치사상이 빈번하게 관측되고 있다. 이와 같은 현상에 가장 큰 영향을 미치고 있는 요인중 하나는 지구온난화이며 실제 산업화 이후 온실가스의 증가와 더불어 극한 기상현상의 발생 빈도가 증가하였다. 현재 예상치 못한 수문사상의 발생으로 인해 수자원관리에 있어서 많은 어려움을 겪고 있으며, 특히 호우사상은 막대한 인명 및 사회적 피해를 야기하고 있다. 우리나라의 경우 계절적 특징으로 여름철에 강수가 집중되는 양상을 보이고 있으며 따라서 여름철 강수량을 예측하여 호우에 대한 대비책을 마련해야한다. 계절강수 예측은 수문, 산림, 식품, 등을 포함한 사회 경제적 파급 효과가 매우 크지만 아직 신뢰성 있는 예측은 어려운 상태이다. 또한, 발생 강도와 빈도가 큰 극한 강우는 주로 짧은 시간에 걸쳐 발생하기 때문에 예측하기가 어렵다. 최근 다양한 분야의 연구에서 AO, NAO, ENSO, PDO등과 같은 외부적 요인이 수문학적 빈도를 변화시킨다고 알려지고 있어 본 연구에서는 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 토대로 외부 기상인자에 의한 변동성을 고려할 수 있는 계절강수량 예측모형을 구축한 후 산정된 결과를 입력 자료로 하여 극치강수량을 추정할 수 있는 비정상성 Four - Parameter (4P)-Beta분포를 이용한 알고리즘을 개발하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 모형으로 확장하여 이를 통해 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용하고자 하였다.

  • PDF

Generation of the bias-corrected satellite precipitation based on machine learning using multiple satellite precipitation products (다중 위성 강수자료를 이용한 머신러닝 기반 최적 위성 강수자료 생성)

  • Jung, Sung Ho;Nguyen, Van Giang;Kim, Young Hun;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.40-40
    • /
    • 2021
  • 수재해 방지를 위한 수문해석 모형에서 정량적인 강수자료의 역할은 매우 중요하다. 최근에는 기후변화로 인한 국지성 집중호우 등 돌발 강수의 빈도가 증가하고 있어 지상에 설치된 우량계보다 시·공간적 변동성을 반영할 수 있는 격자형 위성 강수자료의 활용성이 커지고 있다. 하지만 위성강수자료는 관측 시에 대기의 상태 또는 위성별 관측 센서, 공간적 스케일 차이 등에 의해 실제 내린 강수와의 편의가 존재한다. 이를 해결하기 위해 지점 강수자료를 이용한 통계적, 지형정보학적 상세화 기법이 적용되고 있으나, 대부분의 연구에서 강수자료의 양적 보정만을 목적으로 수행되었다. 본 연구에서는 머신러닝 기반의 랜덤포레스트(random forest) 모델을 사용하여 다중위성 강수자료(CHIRPSv2, CMORPH, GSMaP, TRMMv7)와 기상청에서 제공하는 AWS, ASOS 지점 강수를 사용하여 최적 위성강수자료를 생성 후 각 위성강수자료와 비교·분석하였다. 2003년에서 2017년까지의 각 위성강수자료를 수집하여 같은 공간 스케일로 전처리한 뒤 모델에 입력하였으며 AWS 강수자료는 훈련, ASOS 강수자료는 검증에 이용되었다. 그 결과, 생성된 최적 위성강수자료는 각 위성강수자료보다 지점강수와의 편의가 줄고 높은 상관관계를 나타내고 있다. 이는 앞으로 사용될 위성강수자료의 시·공간적 보정 및 단기예측에 활용할 수 있으며, 특히 원격탐사자료의 의존도가 높은 미계측 대유역 수문해석에 정량적인 강수자료를 제공할 수 있을 것으로 판단된다.

  • PDF