• Title/Summary/Keyword: 통계적방법

Search Result 3,727, Processing Time 0.031 seconds

Statistical Estimation of the Input Parameters in Complex Simulation Code (복잡한 시뮬레이션에서 입력 파라메터의 통계적 추정 문제)

  • 박정수
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.335-345
    • /
    • 1999
  • 시뮬레이션 실행 시간이 매우 오래 걸려서 보통 이용하는 비선형최고제곱법으로는 시뮬레이션의 입력 파라메터(또는 절대 상수)를 추정하기 힘든 경우의 추정 문제를 통계적인 메타모델을 이용하여 해결하는 방법에 대하여 기술하였다. 미리 답을 알고 있는 장난감 모형을 이용하여 절대 상수를 추정하기 위해 사용되는 세가지 통계적 메타모델들(전통적 희귀모형, 공간적 선형모형 그리고 projection pursuit 희귀모형)의 성능을 비교하였다. 그 결과 일양 크리깅(universal Kriging)에 의한 공간적 모형이 가장 우수하였고, 이를 실제 핵융합 시뮬레이션 자료에 적용하여 절대 상수를 추정하였다.

  • PDF

인력계획의 통계적 이해와 적용

  • 조관호;이현지
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.97-103
    • /
    • 2004
  • 인력계획업무를 체계적이고 과학적으로 수행하기 위해서는 다양한 계량적인 모형이 요구된다. 이 중에서 핵심적인 모형은 미래의 인력운영을 시뮬레이션 할 수 있는 인력운영예측모형, 인력구조, 인사제도, 인력흐름간의 수리적인 관계를 분석하는 인력구조 분석모형, 인력운영 목표를 달성하기 위한 진급계획 최적화 모형 등이다. 본 논문에서는 이러한 모형 개발 시 적용한 통계적 방법론을 설명하고 주요 통계적 이슈를 제기하였다

  • PDF

Multi-Sensor Image Alignment By Statistical Correlation (통계적 Correlation을 이용한 다중센서 영상 정합)

  • 고진신;박영태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.586-588
    • /
    • 2003
  • 현재 많이 연구되는 영상융합(Image fusion)에서는 필히 두 영상의 정합(alignment)이 이루어져야만 수행된다. 각기 다른 특징을 갖는 센서(EO.IR.Radar등)로부터 얻는 영상에서는 각각 다른 특징점 정보를 가지므로, 특징점을 이용한 영상 정합 구현에는 전처리 과정이 매우 복잡하고 까다롭게 이루어져야 한다. 본 논문에서는 Correlation에 대한 통계적 상관 관계를 이용하여. 전처리 과정을 단순하게 수행 하여도 매우 강건한 영상 정합이 이루어지도록 구현 하였다. 또한, 통계적 기법에 적합하도록, 효율적인 전처리 과정을 통해 계산량이 적어 지는 방법을 제안 한다.

  • PDF

An Improvement of Stochastic Feature Extraction for Robust Speech Recognition (강인한 음성인식을 위한 통계적 특징벡터 추출방법의 개선)

  • 김회린;고진석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.180-186
    • /
    • 2004
  • The presence of noise in speech signals degrades the performance of recognition systems in which there are mismatches between the training and test environments. To make a speech recognizer robust, it is necessary to compensate these mismatches. In this paper, we studied about an improvement of stochastic feature extraction based on band-SNR for robust speech recognition. At first, we proposed a modified version of the multi-band spectral subtraction (MSS) method which adjusts the subtraction level of noise spectrum according to band-SNR. In the proposed method referred as M-MSS, a noise normalization factor was newly introduced to finely control the over-estimation factor depending on the band-SNR. Also, we modified the architecture of the stochastic feature extraction (SFE) method. We could get a better performance when the spectral subtraction was applied in the power spectrum domain than in the mel-scale domain. This method is denoted as M-SFE. Last, we applied the M-MSS method to the modified stochastic feature extraction structure, which is denoted as the MMSS-MSFE method. The proposed methods were evaluated on isolated word recognition under various noise environments. The average error rates of the M-MSS, M-SFE, and MMSS-MSFE methods over the ordinary spectral subtraction (SS) method were reduced by 18.6%, 15.1%, and 33.9%, respectively. From these results, we can conclude that the proposed methods provide good candidates for robust feature extraction in the noisy speech recognition.

Analysis of the Statistical Methods used in Scientific Research published in The Korean Journal of Culinary Research (한국조리학회지에 게재된 학술적 연구의 통계적 기법 분석)

  • Rha, Young-Ah;Na, Tae-Kyun
    • Culinary science and hospitality research
    • /
    • v.21 no.6
    • /
    • pp.49-62
    • /
    • 2015
  • Give that statistical analysis is an essential component of foodservice-related research, the purpose of this review is to analyse research trends of statistical methods applied to foodservice-related research. To achieve these objective, this study carried out a content analysis on a total of 251 out of 415 research articles published in The Korean Journal of Culinary Research(TKJCR) from January 2010 to December 2013. Of the total 164 research articles focussing on natural science research, qualitative research, articles written in English were excluded from the scope of this study. The results of this study are as follows. First, it turned out that 269 research articles applied quantitative research methods, and only 10 articles applied qualitative research methods among the 279 research articles based on social science research methods. Second, 20 article (8.0%) among the 251 did not specify the statistical methods or computer programs that were used for statistical analysis. Third, it was found that 228 articles (90.8%) used the SPSS program for data analysis. Fourth, in terms of frequency of use, it was revealed frequency analysis was most used, followed in order by reliability analysis, exploratory factor analysis, correlation analysis, regression analysis, structural equation modeling, confirmatory factor analysis, t-test, variance analysis, and cross tabs analysis, However, 3 out of 56 research articles that used a t-test did not suggest a t-value. 10 out of 64 articles that used ANOVA and demonstrated a significant difference in between-group mean did not conducted post-hoc test. Therefore, the researchers with interest in foodservice fields need to keep in mind that choosing and applying the correct statistical technique both determine the value and the success or failure of a study. To enhance the value and success of a study, it is necessary to use the proper statistical technique in an efficient way in order to prevent statistical errors.

An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China (Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로)

  • Ding, Xuan-Ze;Lee, Young-Chan
    • Journal of Industrial Convergence
    • /
    • v.16 no.4
    • /
    • pp.33-46
    • /
    • 2018
  • Personal credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Recently, many classification algorithms and models are used in personal credit scoring. Personal credit scoring technology is usually divided into statistical method and non-statistical method. Statistical method includes linear regression, discriminate analysis, logistic regression, and decision tree, etc. Non-statistical method includes linear programming, neural network, genetic algorithm and support vector machine, etc. But for the development of the credit scoring model, there is no consistent conclusion to be drawn regarding which method is the best. In this paper, we will compare the performance of the most common scoring techniques such as logistic regression, neural network, and support vector machines using personal credit data of the financial institution in China. Specifically, we build three models respectively, classify the customers and compare analysis results. According to the results, support vector machine has better performance than logistic regression and neural networks.

A New Statistical Sampling Method for Reducing Computing time of Machine Learning Algorithms (기계학습 알고리즘의 컴퓨팅시간 단축을 위한 새로운 통계적 샘플링 기법)

  • Jun, Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.171-177
    • /
    • 2011
  • Accuracy and computing time are considerable issues in machine learning. In general, the computing time for data analysis is increased in proportion to the size of given data. So, we need a sampling approach to reduce the size of training data. But, the accuracy of constructed model is decreased by going down the data size simultaneously. To solve this problem, we propose a new statistical sampling method having similar performance to the total data. We suggest a rule to select optimal sampling techniques according to given data structure. This paper shows a sampling method for reducing computing time with keeping the most of accuracy using cluster sampling, stratified sampling, and systematic sampling. We verify improved performance of proposed method by accuracy and computing time between sample data and total data using objective machine learning data sets.

Optimum Designs of Fatigue Life Tests for Inverse Gaussian Distribution (역정규분포에 대한 피로수명시험의 최적설계)

  • 최규명;이낙영
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.621-631
    • /
    • 1999
  • 재료의 피로 파괴과정은 균열의 발생과 전파 및 성장의 과정을 거쳐 마침내 결정적 균열의 크기가 일정한도를 넘어서면 재료의 파괴가 일어난다. 이 때까지의 시간, 즉 피로 수명이 역정규분포를 따를 때 재료의 수명과 스트레스 수준과 관계를 나타 내는 S-N곡선에 대한 대수선형모형(log-linear model)을 제시하고, 이 모형하에서 피로수명시험에 대한 통계적 최적시험설계방법을 찾는다. 통계적 최적여부에 대한 판단기준으로 설계 스트레스 수준하의 특정 시점에서의 신뢰도에 대한 최우추정량의 점근분산을 최소화하는 방법을 사용하였다.

  • PDF

The study for the applications of the measurement system assessment in statistical process control (통계적 공정관리 추진시 측정시스템 평가의 실시방법에 관한 연구)

  • 민철희;백재욱
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.13-28
    • /
    • 1998
  • Corrent measurement system assessment is crucial in helping improve process or quality. In this article, we would like to apply several methods of measurement system assessment in statistical process control. Specifically, focus is on accuracy, precision (both repeatability and reproducibility included), and stability of the measurement process.

  • PDF

교육 현장 연구의 통계적 문제에 관한 고찰

  • 김상룡
    • Education of Primary School Mathematics
    • /
    • v.1 no.2
    • /
    • pp.125-136
    • /
    • 1997
  • 교육의 장에서 많은 교사들은 다양한 방법으로 교육 현실의 상태를 올바로 파악하여 현장에 응용하고, 새로운 교육 기법을 개발하여 교육의 질을 개선시키고자 하는 노력을 하고 있다. 이러한 과정에서 교사들은 연구 목적을 정하고, 그에 합당한 측도(measure)를 개발하고, 실험을 설계하고, 가설에 맞는 통계적 방법을 적용하여 결론을 도출하여 재투입(feed-back)하고 있는 것이 현실이다. 이러한 연구 결과에 기초해서 새로운 교육 개선 안이 나오고, 이를 토대로 올바르고 바람직한 방향의 교육이 실현되게 된다.(중략)

  • PDF