• 제목/요약/키워드: 통계예측모델

검색결과 545건 처리시간 0.029초

Prediction of a rectal temperature utilizing a thermal perception index.

  • Kwon, Young G.;Jerry D.Ramsey
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1998년도 춘계학술발표 논문집
    • /
    • pp.159-164
    • /
    • 1998
  • 이 논문은 신체온도를 직접 측정하지 않고서 신체온도를 예상하는 모델을 연구한 것이다. 열감지지수 (TPI)를 개발하여 환경으로부터 느끼는 체감온도와 몸의 내부온도인 직장온도(Tuec)와 몸의 외부온도인 피부온도 (Tskin)를 예측하도록 하였다. Kwon와 Ramsey의 개발모델을 Goldman의 모델과 비교해본 결과 정확도에 통계적으로 유의한 차이가 없었다. 회귀분석과 경험을 토대로 만든 체감온도를 예측할 수 있는 손쉬운 Kwon의 열감지수 (KTPI)도 제시하였다. 대부분의 사람들이 쉽게 예측할 수 있도록 측정 또는 사용가능한 몇 개의 환경변수로부터 몸의 예상 내부온도와 외부온도를 계산할 수 있게 단순화하였다.

  • PDF

유조선 종강도부재의 확률론적 부식속도 예측모델의 개발 (A Probabilistic Corrosion Rate Estimation Model for Longitudinal Strength Members of Tanker Structures)

  • 백점기;박영일
    • 대한조선학회논문집
    • /
    • 제35권2호
    • /
    • pp.83-93
    • /
    • 1998
  • 본 연구에서는 유조선 구조의 종강도부재를 대상으로 확률론적 부식예측모델을 개발하였다. 이를 위해 유조선 종강도부재의 부식계측자료를 수집하고, 구조 부위별로 통계분석을 통하여 부식속도(년간 부식량)의 평균치와 분산치를 계산하였다. 구조부재의 부식진행특성은 코팅방법이나 화물 적재방법에도 큰 영향을 받으며, 본 연구에서는 코팅방법에 따라 코팅수명이 달라진다는 점에 착안하여 부식속도특성에 대한 코팅수명의 영향을 분석하였다. 통계자료를 바탕으로 분석한 결과의 정도는 통계자료량에 의존하며, 본 연구에서는 추후 부식 계측자료가 더욱 축척되면 이들 자료의 추가 통계분석이 용이하도록 전용 해석프로그램을 개발하였다. 부식손상효과를 고려한 노후선박의 구조강도성능과 신뢰성을 평가하기 위하여는 선령의 증가에 따른 선체구조 주요부재의 부식속도를 예측할 수 있는 계산 모델이 필요하며, 본 연구에서 개발한 부식속도 예측모델은 그 같은 목적으로 유용하게 활용할 수 있으리라 기대된다.

  • PDF

ARIMA 모델을 이용한 데이터 흐름 예측 기법 (Data Flow Prediction Scheme using ARIMA Model)

  • 김동현;김민우;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.141-142
    • /
    • 2018
  • 기존 데이터의 패턴 예측에는 통계를 기반으로 한 수학적 모델이 주로 사용되었으나 새로운 데이터에 대한 피드백이 부족하기 때문에 장기간의 데이터 예측에 한계가 있다. 또한 데이터의 특성이 다양하고 복잡한 경우에는 수학적 모델의 결합 및 계산과정이 어려워진다. 따라서 본 논문에서는 데이터의 학습 및 예측에 기존 정적 모델이 아닌 기계학습 중 시계열 데이터 분석 (Time Series Analysis) 을 기반으로 연구를 진행하였다. 기계학습은 복잡한 특성을 가진 데이터를 학습하여 미래의 데이터 값을 예측하거나 분류하는데 있어서 정확도 및 처리시간 측면에서의 성능을 향상시킬 수 있다.

  • PDF

인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝 (Clickstream Big Data Mining for Demographics based Digital Marketing)

  • 박지애;조윤호
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.143-163
    • /
    • 2016
  • 인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.

수문학적 활용을 위한 레이더와 수치예보모델 예측강우의 실시간 병합 기법 개발 (Real-time blending method development of radar-based QPF and numerical weather prediction models for hydrological application)

  • 윤성심;이동률
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.99-99
    • /
    • 2018
  • 기상이변으로 인해 국지성 호우의 발생 증가와 그로 인한 수재해 피해가 증가하고 있다. 따라서 수재해를 사전에 예측하고 저감하기 위해 비구조물적 대책인 실시간 홍수예보시스템 개발 및 운영에 관한 연구들이 수행되고 있다. 일반적으로 홍수예보시스템은 대피선행시간 확보를 위해서 초단시간 혹은 단기 수치예보모델을 수문해석모형이나 예보기법의 입력으로 활용하고 있다. 초단시간 예측은 기상레이더를 기반으로 외삽, 이류, 셀 추적 등의 기법을 활용하여 0~3시간 이내의 강수예측을 수행한다. 그러나 역학이나 물리적 과정이 동반되지 못하여 0~ 2시간 이내에서의 예측성은 높은 반면, 예측시간이 길어질수록 예측력이 낮아진다. 단기수치예보모델은 종관관측에 의존하면서 역학이나 물리과정을 동반하므로 0~6시간 혹은 12시간 이상의 예측을 수행하지만, 수치모델의 고유특성인 스핀업 등의 예측 불확실성이 내재되어 있어 예측 초기시간에서의 예측력이 낮은 한계가 있다. 따라서 강수예측의 정확도 향상을 위해 레이더와 수치예보모델의 병합기법이 필요하다. 본 연구에서는 통계분석을 통해 경험적으로 산출된 시간적 가중치를 이용한 기존 병합기법의 한계를 극복하면서 호우에 따른 가변성을 반영하는 실시간 병합기법을 개발하고, 수문학적인 활용성을 평가하고자 하였다. 사용된 예측강우 자료는 레이더 기반인 MAPLE, KONOS, 공간규모분할 예측강우와 수치예보모델 기반인 UM와 ASAPS의 예측강우이며, 제시한 가중치 산정기법은 직전 예측강우의 오차가 현 시점의 예측강우의 오차와 유사하다는 가정하에 오차항을 포함한 과거 1시간 예측강우들간의 가중치 조합이 과거 지상관측강우와의 평균제곱근오차가 최소가 되도록 화음 탐색법을 이용하여 찾는 것이다. 가중치 조합은 예측강우의 생산 시간 간격을 고려하여 매 10분마다 산정하며, 미래 3시간 예측까지 산정된 가중치를 적용한다. 수도권 영역을 대상으로 병합된 예측강우와 레이더 관측강우를 비교한 결과, 정량적 정확도가 향상됨을 확인할 수 있었다. 또한, 예측강우의 수문학적 활용성은 도시유출해석모의를 통해 평가하였다. 그 결과, 병합된 예측강우로 모의된 수심이 관측수심과 유사하여 수문학적 활용성 확인할 수 있었다.

  • PDF

건물에 대한 지진취약도 모델링 및 공간 분석 (A Development of a Seismic Vulnerability Model and Spatial Analysis for Buildings)

  • 김상빈;김성훈
    • 한국융합학회논문지
    • /
    • 제11권10호
    • /
    • pp.9-18
    • /
    • 2020
  • 현 연구는 개별 건물에 대한 지진취약도 예측 및 특정 관심 지역 내 전체 건물의 안전 상태를 예측하는 방법의 제시에 그 목적이 있다. 현 연구의 범위는 지진피해 저감 연구 중, 예방 활동에 속하는 시뮬레이터 모델개발, 모델 유효성 검증을 포함한다. 연구의 대상은 지역 건물 시스템이다. 선행연구 조사 결과, 국내의 지진 예측 모델링 및 그 결과를 GIS를 활용해 적용한 사례의 성과는 아직은 미비한 것으로 판단되었으며, 이를 다소간이나마 개선하기 위한 방편의 일환으로 현 연구가 진행되었다. 국내·외 총 348개의 데이터를 사용해 통계 분석이 실시되었다. 일련의 통계 분석 결과, 최적화 척도법에 의한 모델이 개발되었고, 모델의 예측 정확도는 87%로 산정되었다. 통계 분석을 통해 개발된 모델식을 지역 건물 시스템의 지진취약도 예측에 적용하기 위해, 공간 분석 기법이 활용되었다. 서울시 구도심과 신도심의 특성을 대표하는 강남구와 종로구 그리고 종로구와 지반 조건이 유사한 은평구를 대상 지역으로 선정하였고, 분석 결과 건물을 대상으로 강남구가 종로구와 은평구에 비해 위험한 것으로 예측되었다.

인적 모델 개발에 필요한 통계 데이터 고찰 (Review On the Statistical Data to Implement Human Model)

  • 조수산;장은진;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2015년도 추계학술대회
    • /
    • pp.193-195
    • /
    • 2015
  • 해양사고 원인의 70 % 이상을 차지하는 인적오류 예방은 해양안전에 가장 중요한 이슈이다. 인적오류는 확률기반의 인적 모델을 구축하여 평가함으로써 예상되는 위기의 수준을 과학적으로 예측할 수 있다. 확률기반 인적 모델을 구축하기 위해서는 사건의 원인과 결과 사이에 연계성을 갖고 있는 통계 데이터가 필요하다. 본 연구에서는 이러한 연계 데이터 확보를 위한 것으로, 해양안전심판원의 통계 데이터 사이의 연계성 확보 방안을 주로 검토하였다. 그리고 이러한 통계 데이터를 인적 모델에 적용하는 방법과 전략도 검토하였다. 인적 모델은 회사, 선박, 해기사 관련 요소들이 총체적으로 반영될 필요가 있음을 알았고, 이러한 세 가지 요소로 구성된 통합 모델을 설계하기 위한 방안도 검토하였다. 특히, 각 요소들에 포함될 데이터 사이의 연계성 확보를 위해서 해양사고 연계 체인(Chain)을 도입하였다. 확보한 데이터는 사고의 가장 근본원인인 Hazard부터 사고의 영향을 나타내는 Impact까지의 6 단계 분석 방법을 적용하여 통계 데이터에 결합되어 있는 원인과 결과 사이의 연계성을 확보할 수 있는 방안을 수립하였다. 본 연구는 중장기적으로 추진할 과제이기 때문에 향후 본 연구 내용을 토대로 인적 모델을 개발하여 해양사고 예방에 적극 기여하고자 한다.

  • PDF

해양사고 예보 시스템 개발(III): 3차원 통계 가시화 시스템 (Development of Marine Casualty Forecasting System (III): Three-Dimensional Visualization System)

  • 임정빈;공길영;구자영;김창경
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2003년도 춘계공동학술대회논문집
    • /
    • pp.66-72
    • /
    • 2003
  • 이 논문에서는 해양사고 통계예측 결과의 의미를 쉽게 알 수 있도록 가시화하기 위한 3차원 가시화 시스템의 구현에 관해서 기술했다. 이 시스템 개발에는 그래픽 사용자 인터페이스 방식(GUI)과 웹(Web) 기반 가상현실(VR) 기술을 주로 적용하였다. 그리고, 매일의 상황을 나타내기 위하여 해양사고와 위험수준의 시간기반 예측 모델을 개발하였다. 시스템 작동실험 결과, 3차원 가상공간에 단순한 색으로 복잡한 통계결과를 나타낼 수 있었다.

  • PDF

빅데이터를 활용한 국내 도서의 해외 판매시 굿셀러 예측 (Prediction of Good Seller in Overseas sales of Domestic Books Using Big Data)

  • 김나연;김도영;김미려;정지영;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.401-404
    • /
    • 2022
  • 한국 문학이 세계로 뻗어나감에 따라 해외 시장에서 자리를 잡는 것이 중요해진 시점이다. 본 연구에서는 2016 년도부터 2020 년도까지 최근 5 년간 해외 출간된 도서들 중에서 굿셀러로 분류되는 누적 5 천부 이상 판매 여부를 예측하고자 했다. 굿셀러로 분류되는 도서는 전체 번역 도서 중 적은 비율을 차지하여 데이터 불균형이 발생하였으며, 본 연구에서는 SMOTE 기법과 앙상블 알고리즘을 적용하여 데이터 불균형 문제를 해결하였다. 그 결과, 데이터 클래스 비율이 1:1 에 가까울수록 성능 개선 효과가 나타났으며 LightGBM 모델이 99.83%의 AUC 값을 얻어 다른 앙상블 알고리즘에 비해 가장 좋은 예측 성능을 보임을 검증하였다. 또한 누적 5 천부 이상 판매 여부 예측에 있어 큰 영향을 미치는 변수로는 작가가 가장 중요한 요인으로 나타났으며 출간 국가, 그리고 평점 평균, 평점 참여자 수 같은 온라인 요인도 판매 예측에 유의미한 변수로 나타난 것을 확인할 수 있었다.

신경망과 유전자 알고리즘을 이용한 자연재해 피해예측 모델 연구 (Natural Disaster Damage Cost Prediction Model based on Neural Network and Genetic Algorithm)

  • 최선화
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.380-384
    • /
    • 2010
  • 기후온난화, 국지성 호우 및 대규모 태풍으로 인한 피해가 증대되면서 사회 경제적 손실 또한 날로 증가하고 있어 재해로 인한 피해 발생가능성을 효율적으로 예측하는 모델을 통한 선제적 대응이 필요하다. 재난 재해의 위험성 분석 방법은 주로 확률 통계기법을 기반으로 하는 연구가 주류를 이루었으나, 본 논문에서는 포착된 현상의 데이터를 이용해 그 데이터를 지배하는 경험적 규칙성을 학습하고 획득하는데 다른 기법보다 탁월한 성능을 가진 신경망 모델을 적용하여 자연재해 피해예측 모델을 연구하였다. 1991년부터 2005년 사이에 우리나라에서 발생한 자연재해의 피해자료와 기상개황 자료를 이용하여 지역별 자연재해로 인한 피해를 예측하는 신경망 모델은 우리나라 232개 행정구역에 대하여 누적강우량과 최대풍속, 그리고 재해사상 발생 5일 이내의 선행강우량을 입력변수로 하고 총 피해액을 출력변수로 한다. 또한 학습을 통한 최적의 해를 찾기 위해 신경망의 매개변수 학습률, 모멘텀, 편의값을 유전자알고리즘으로 결정하여 학습을 수행 하였다.

  • PDF