• 제목/요약/키워드: 토픽 키워드

검색결과 227건 처리시간 0.025초

토픽 식별성 향상을 위한 키워드 재구성 기법 (Keyword Reorganization Techniques for Improving the Identifiability of Topics)

  • 윤여일;김남규
    • 한국IT서비스학회지
    • /
    • 제18권4호
    • /
    • pp.135-149
    • /
    • 2019
  • Recently, there are many researches for extracting meaningful information from large amount of text data. Among various applications to extract information from text, topic modeling which express latent topics as a group of keywords is mainly used. Topic modeling presents several topic keywords by term/topic weight and the quality of those keywords are usually evaluated through coherence which implies the similarity of those keywords. However, the topic quality evaluation method based only on the similarity of keywords has its limitations because it is difficult to describe the content of a topic accurately enough with just a set of similar words. In this research, therefore, we propose topic keywords reorganizing method to improve the identifiability of topics. To reorganize topic keywords, each document first needs to be labeled with one representative topic which can be extracted from traditional topic modeling. After that, classification rules for classifying each document into a corresponding label are generated, and new topic keywords are extracted based on the classification rules. To evaluated the performance our method, we performed an experiment on 1,000 news articles. From the experiment, we confirmed that the keywords extracted from our proposed method have better identifiability than traditional topic keywords.

코로나19 관련 키워드 분석: 토픽 모델링과 의미 연결망 네트워크 분석을 중심으로 (COVID19 Related Keyword Analysis: Based on Topic Modeling and Semantic Network Analysis)

  • 김동욱;이민상;정재영;김현철
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.127-132
    • /
    • 2022
  • In the era of COVID-19 pandemic, COVID related keywords, news and SNS data are pouring out. With the help of the data and LDA topic modeling, we can check out what media reports about COVID-19 and vaccines. Also, we can be clear how the public reacts to the vaccine on social media and how this is related with the increasing number of COVID-19 patients. By using sentimental analysis methodology, we can get to know about the different kinds of reports that Korea media send out and get to know what kind of emotions that each media company uses in majority. Through this procedure, we can know the difference between the Korean media and the foreign ones. Ultimately, we can find and analyze the keyword that suddenly rose during the COVID-19 period throughout this research.

텍스트 마이닝과 소셜 네트워크 기법을 활용한 국제무역 키워드, 중심성과 토픽에 대한 빅데이터 분석 (A Big Data Analysis on Research Keywords, Centrality, and Topics of International Trade using the Text Mining and Social Network)

  • 이재득
    • 무역학회지
    • /
    • 제47권4호
    • /
    • pp.137-159
    • /
    • 2022
  • This study aims to analyze international trade papers published in Korea during the past 2002-2022 years. Through this study, it is possible to understand the main subject and direction of research in Korea's international trade field. As the research mythologies, this study uses the big data analysis such as the text mining and Social Network Analysis such as frequency analysis, several centrality analysis, and topic analysis. After analyzing the empirical results, the frequency of key word is very high in trade, export, tariff, market, industry, and the performance of firm. However, there has been a tendency to include logistics, e-business, value and chain, and innovation over the time. The degree and closeness centrality analyses also show that the higher frequency key words also have been higher in the degree and closeness centrality. In contrast, the order of eigenvector centrality seems to be different from those of the degree and closeness centrality. The ego network shows the density of business, sale, exchange, and integration appears to be high in order unlike the frequency analysis. The topic analysis shows that the export, trade, tariff, logstics, innovation, industry, value, and chain seem to have high the probabilities of included in several topics.

미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 - (Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining -)

  • 석영선;송기환;한효주;이정아
    • 한국조경학회지
    • /
    • 제49권5호
    • /
    • pp.79-96
    • /
    • 2021
  • 그린인프라 계획은 미세먼지 저감을 위한 대표적인 조경 계획 방안 중 하나이다. 이에, 본 연구에서는 미세먼지 저감을 위한 그린인프라 계획 시 활용될 수 있는 요소를 텍스트 마이닝 기법을 활용하여 도출하고자 하였다. 미세먼지 저감계획, 그린인프라 계획 요소 등의 키워드를 중심으로 관련 선행연구, 정책보고서 및 법률 등을 수집하여 텍스트 마이닝을 통해 단어 빈도-역 문서 빈도(Term Frequency-Inverse Document Frequency, 이하 TF-IDF) 분석, 중심성 분석, 연관어 분석, 토픽 모델링 분석을 실시하였다. 연구결과, 첫째, TF-IDF 분석을 통해 미세먼지 및 그린인프라와 관련된 주요 주제어는 크게 환경문제(미세먼지, 환경, 탄소, 대기 등), 대상 공간(도시, 공원, 지역, 녹지 등), 그리고 적용 방법(분석, 계획, 평가, 개발, 생태적 측면, 정책적 관리, 기술, 리질리언스 등)으로 구분할 수 있었다. 둘째, 중심성 분석 결과, TF-IDF와 유사한 결과가 도출되었으며, 주요 키워드들을 연결하는 중심단어는 '그린뉴딜', '유휴부지'임을 확인할 수 있었다. 셋째, 연관어 분석 결과, 미세먼지 저감을 위한 그린인프라 계획 시, 숲과 바람길의 계획이 필요하며, 미기후 조절의 측면에서 수분에 대한 고려가 반드시 필요한 것으로 확인되었다. 또한, 유휴공간의 활용 및 혼효림의 조성, 미세먼지 저감 기술의 도입과 시스템의 이해가 그린인프라 계획 시 중요한 요소가 될 수 있음을 확인할 수 있었다. 넷째, 토픽 모델링 분석을 통해 그린인프라의 계획요소를 생태적·기술적·사회적 기능을 중심으로 분류하였다. 생태적 기능의 계획요소는 그린인프라의 형태적 부분(도시림, 녹지, 벽면녹화 등)과 기능적 부분(기후 조절, 탄소저장 및 흡수, 야생동물의 서식처와 생물 다양성 제공 등), 기술적 기능의 계획요소는 그린인프라의 방재 기능, 완충 효과, 우수관리 및 수질정화, 에너지 저감 등, 사회적 기능의 계획요소는 지역사회 커뮤니티 기능, 이용객의 건강성 회복, 경관 향상 등의 기능으로 분류되었다. 이와 같은 결과는 미세먼지 저감을 위한 그린인프라 계획 시 리질리언스 및 지속가능성과 같은 개념적 키워드 중심의 접근이 필요하며, 특히, 미세먼지 노출 저감의 측면에서 그린인프라 계획요소의 적용이 필요함을 시사한다고 볼 수 있다.

코로나 이전과 이후의 4차 산업혁명과 광고의 뉴스기사 분석 : LDA와 Word2vec을 중심으로 (News Article Analysis of the 4th Industrial Revolution and Advertising before and after COVID-19: Focusing on LDA and Word2vec)

  • 차영란
    • 한국콘텐츠학회논문지
    • /
    • 제21권9호
    • /
    • pp.149-163
    • /
    • 2021
  • 4차 산업혁명이란 인공지능(AI), 사물인터넷(IoT), 로봇기술, 드론, 자율주행과 가상현실(VR) 등 정보통신 기술이 주도하는 차세대 산업혁명을 말하는 것으로, 광고 산업 발전에도 큰 영향을 미쳤다. 그러나 지금 전세계는 코로나 확산 방지를 위하여, 비접촉, 비대면 생활환경으로 급속도로 빠르게 변화하고 있다. 이에 따라 4차 산업혁명과 광고의 역할도 변화하고 있다. 따라서 본 연구에서는 코로나 19 이전과 이후의 4차산업 혁명과 광고의 변화를 살펴보기 위해 빅카인즈를 활용해서 텍스트 분석을 하였다. 코로나 19 이전인 2019년과 코로나 19 이후인 2020년을 비교하였다. LDA토픽 모형 분석과 딥러닝 기법인 Word2vec을 통해 주요 토픽과 문서분류를 하였다. 연구결과 코로나19 이전에는 정책, 콘텐츠, AI 등이 나타났으나, 코로나 이후에는 데이터를 활용한 금융, 광고, 배달 등으로 점차 영역이 확장되며, 더불어 인재양성 교육이 중요한 이슈로 나타난 것을 알 수 있었다. 또한, 코로나 19 이전에는 4차 산업혁명 기술과 관련된 광고를 활용하는 것이 주류를 이루었다면, 코로나 19 이후에는 참여, 협력, 일상 필요 등 좀 더 적극적으로 첨단기술 자체에 대한 교육과 인재양성 등에 대한 키워드가 두드러지게 나타나고 있다. 따라서 이러한 연구결과는 코로나 19 이후에 4차 산업혁명에서 광고의 나아갈 방향을 제시하면서, 이에 필요한 이론적, 실무적으로 적용할 수 있는 다각적인 전략을 제시하는 데 의의가 있다.

코로나19에 관한 국회의원 의정활동 네트워크 분석 - 신문 기사를 중심으로 - (A Social Network Analysis of Legislators' Activities on COVID-19 in the National Assembly: Based on News Articles)

  • 김성덕;안유리;박지홍
    • 한국문헌정보학회지
    • /
    • 제55권2호
    • /
    • pp.91-110
    • /
    • 2021
  • 본 연구는 국내 주요 뉴스기사를 활용하여 코로나19에 직면한 한국 국회의 의정활동에 대한 네트워크 분석을 수행하고, 코로나19 장기화 국면에서 한국 국회의 정책 방향을 제안하고자 하였다. 연구를 위해 코로나 19 관련 뉴스기사를 수집하고 기사의 인물 및 핵심어 정보를 활용하여 동시출현 기반 국회의원 네트워크, 내용 기반 국회의원 네트워크 분석을 수행하였다. 또한, 토픽모델링 기법을 활용한 주제별 키워드 중심 국회의원 네트워크 구성하여 분석을 실시하였다. 연구결과, 국회의원 의정활동 네트워크에서 더불어민주당 소속 국회의원들은 코로나19와 관련하여 재난지원금 및 국가 재정, 의료 복지, 국난, 민생법안 등 폭넓은 주제와 관련성을 갖는 반면, 나머지 정당의 국회의원들과 관련성이 높은 주제는 국가 재정과 관련된 안건들로 제한되는 경향이 확인되었다. 그리고 해당 네트워크의 모든 중심성 지표에서 더불어민주당과 국민의힘 대표 의원들이 주요한 영향력을 지니고 있는 것으로 확인되었다. 연구결과를 토대로, 여러 정당 소속 국회의원 간 소통의 기회를 늘려 코로나19 관련 다양한 안건에 대한 협력이 도모되어야 하고, 이를 위해 양당의 대표 국회의원들의 적극적인 역할 수행이 필요하다는 정책 방향을 제시하였다.

빅데이터 토픽모델링과 감성분석을 활용한 물공급과정에서의 수질사고 기사 분석 (Analysis of articles on water quality accidents in the water distribution networks using big data topic modelling and sentiment analysis)

  • 홍성진;유도근
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1235-1249
    • /
    • 2022
  • 본 연구에서는 웹 크롤링 방법을 이용한 자료수집, 텍스트 마이닝을 활용한 데이터 분석과 같은 빅데이터 분석기법을 이용하여 국내 상수도 수질사고에 대한 전개양상 분석을 수행하였다. 상수도 시스템의 수질사고 빅데이터 뉴스의 추출을 위한 웹크롤링 기법을 적용하고 정확한 수질사고 뉴스를 획득하고자 알고리즘을 절차화하여 제시하였다. 또한 대규모 수질사고의 경우 사고발생에 따른 사고인지, 사고확산, 사고대응, 사고해결 등과 같은 전개양상이 나타나므로, 각 단계에 따른 적절한 뉴스기사를 추출하고, 이에 따른 정보분석을 실시하였다. 즉, 각 단계 별 주요 키워드, 감성분석을 통한 수질사고 전개양상분석을 사례기반으로 상세히 실시하고 그 의미를 분석, 도출하였다. 제안된 방법론을 2020년 발생한 인천광역시 유충사고기간에 적용하여 분석하였다. 그 결과, 수질사고와 같은 소비자에게 직접적인 영향을 미치는 정보의 공개가 제한된 상황에서 사고발생시 장기간의 피해 지속성이 있는 수질사고에 대한 뉴스 기사 언론보도의 논조 및 소비자의 긍부정도가 시간에 따라 명확히 변화됨을 확인할 수 있었다. 이것은 공급자 입장에서의 수질사고의 전개양상은 시설물의 빠른 복구도 매우 중요하지만 소비자의 긍정도를 높이기 위한 소비자 중심의 정책마련의 필요성을 제시하고 있다.

텍스트 마이닝을 활용한 황해 관련 연구동향 분석연구 (Analysis of Research Trends in Relation to the Yellow Sea using Text Mining)

  • 황규원;김진경;강승구;강길모
    • 해양환경안전학회지
    • /
    • 제29권7호
    • /
    • pp.724-739
    • /
    • 2023
  • 황해는 지정학적으로 한국, 중국, 북한 사이 해역에 위치하고 있으며, 최근 해양공간 이용이 확대되어 사회적·경제적 가치가 증가하고 있다. 또한 기후변화로 인한 해양환경 변화, 대기오염물질 이동 등 한·중 공동 대응 및 협력의 필요성이 증가되고 있다. 본 연구에서는 황해(Yellow Sea) 키워드의 연구논문을 대상으로 핵심주제(Topic)을 도출하고, 저자 네트워크 분석을 수행하여 연구동향을 탐색하였다. 연구대상으로 1984년부터 2021년 사이에 게재된 Web of Science DataBase의 황해 관련 연구논문을 추출하고, 한중 어업협정, 해양환경공동조사 등 한국과 중국의 주요 이벤트를 중심으로 4개의 시기로 구분하였다. 연구방법으로 텍스트 마이닝(Text Mining)의 일종인 토픽모델링(Topic Modeling)을 활용하여 Topic을 도출하였다. 또한 저자 네트워크를 분석하여 해당 분야의 주요 연구 그룹(Community)과 연구자 및 연구기관의 영향력을 파악하고 시사점을 제시하였다. 분석결과 황해 연구논문의 핵심주제는 1기 퇴적물, 해양생물, 2기 산성화, 미세먼지, 3기 수산양식, 지진, 4기 탄소요인, 해양생태계 등으로 변화하였고, 시기별로 핵심 연구자를 중심의 연구자 그룹이 증가하였다. 연구결과를 토대로 황해 관련 연구 동향과 주요 연구자 및 연구기관을 파악함으로써 향후 한국과 중국 간의 황해 연구협력에 기여하고자 한다.

NFT(Non-Fungible Token) Patent Trend Analysis using Topic Modeling

  • Sin-Nyum Choi;Woong Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.41-48
    • /
    • 2023
  • 본 논문은 여러 산업 분야에서 범용적으로 활용될 수 있는 NFT(Non-Fungible Token)에 대해 토픽 모델링 기법을 활용하여 최근의 NFT 산업 동향에 대한 분석 결과를 제시한다. 본 연구에서는 산업 동향을 파악하기 위해 특허 데이터를 활용하였으며, NFT 표준안이 처음으로 발표되었던 2017년부터 2023년 10월까지 특허정보검색서비스 키프리스에 등록된 NFT 관련 국내·외 특허 각각 371건, 454건의 특허 데이터를 수집하였다. 다음으로 전처리 작업에서 불용어, 표제어를 제거 후 명사 단어만을 추출하였고, 분석 방법으론 빈도수에 따른 상위 50개의 단어를 나열하고, 단어마다 계산된 TF-IDF 값을 같이 확인하여 산업 동향의 핵심 키워드를 도출하였다. 다음으로, LDA 알고리즘을 활용해 국내·외 별로 특허 데이터에서 잠재된 4개의 주요 주제를 도출하였다. 도출한 주제별로 내용을 분석하고, 실제 NFT 산업사례를 근거로 들어 NFT 산업 동향 분석내용을 제시하였다. 선행연구에서는 논문 데이터를 통해 학술적 관점에서 동향을 제시하였다면 본 연구는 현장 실무에 기반을 둔 데이터를 활용하여 실용적인 동향 내용을 제공했다는 점에서 의의가 있으며, NFT 산업계 관련자들이 시장 현황 파악 및 새로운 아이템 창출을 위한 참고용으로 활용될 것으로 기대한다.

머신러닝 기반의 신약 재창출 관련 연구 동향 분석 (Analysis of Research Trends Related to drug Repositioning Based on Machine Learning)

  • 유소연;임규건
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.21-37
    • /
    • 2022
  • 신약을 개발하는 한 가지 방법의 하나인 신약 재창출(Drug Repositioning)은 이미 사람들에게 사용할 수 있도록 승인된 약물들이 다른 용도로 사용되도록 하여 새로운 적응증을 발견하는 유용한 방법이다. 최근에는 머신러닝 기술의 발달로 방대한 생물학적 정보를 분석하여 신약 개발에 활용하는 경우가 증가하고 있다. 신약 재창출에 머신러닝 기술을 활용하면 효과적인 치료법을 신속하게 찾아내는 데 도움을 줄 것이다. 현재 심각한 급성 호흡기 증후군인 코로나바이러스(COVID-19)에 의한 신종 질병으로 전 세계가 힘든 시간을 보내고 있다. 이미 임상적으로 승인된 약물의 용도를 변경하는 신약 재창출은 COVID-19 환자를 치료하기 위한 치료제의 대안이 될 수 있다. 본 연구는 머신러닝 기법을 활용하여 신약 재창출 분야에 대한 연구 동향을 살펴보고자 한다. Pub Med에서 웹 스크래핑 기법을 사용하여 'Drug Repositioning'이라는 키워드로 총 4,821건의 논문을 수집하였다. 데이터 전처리 후, 4,419건의 논문을 대상으로 빈도분석, LDA 기반 토픽모델링, Random Forest 분류 분석 및 예측 성능평가를 수행하였다. Word2vec 모델을 기반으로 연관어를 분석하였고, PCA 차원 축소 후 K-Means 군집화하여 레이블을 생성한 후, t-SNE 알고리즘을 이용하여 논문이 형성하고 있는 그룹을 시각화하고, LDA 결과에 계층적 군집화를 적용하여 히트맵으로 시각화하였다. 본 연구는 신약 재창출과 관련된 연구 주제가 무엇인지를 파악하고, 머신러닝 알고리즘을 사용하여 대량의 문헌에서 의미 있는 주제를 도출하고 시각화하는 방법을 제시하였다. 향후 신약 재창출 분야의 연구나 개발 전략을 수립하기 위한 기초자료로 활용되는 데 도움을 줄 것이라고 기대한다.