• Title/Summary/Keyword: 토크컨버터

Search Result 83, Processing Time 0.026 seconds

A Study on the Basic Design of a Torque Converter Using Equivalent Performance Model (등가 성능모델을 이용한 토크 컨버터의 기초 설계에 관한 연구)

  • Jang, Wook-Jin;Lim, Weon-Sig;Lee, Jang-Mooee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.369-377
    • /
    • 1997
  • The torque converter, a major part of automatic transmissions, has many difficulties in analysis due to the factors such as power transmission through fluid flow, complex internal geometry, and various operating conditions. Because of such difficulties, the dynamic analysis and design of a torque converter are generally carried out by using equivalent performance model which is based on the concept of mean flow path. Since the design procedures of a torque converter are essential technology of automotive industry, the details of the procedures are rarely published. In this study, the basic design procedures of a torque converter are systemized and coded based on the equivalent performance model. The mathematical methods to deal with mean flow path determination and the core-shape are developed. And by using this model, the method of determination of performance parameters satisfying the requested performance is proposed. Finally, to embody the three-dimensional shape, the intermediate blade angles which maximize the tractive performance are determined and laid out.

A Study on the Correction Factor of Flow Angel by using the One Dimentional Performance Model of Torque Converter (토크 컨버터의 1차원 성능 모델을 이용한 유동 각도 보정 계수에 관한 연구)

  • Im, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.506-517
    • /
    • 2000
  • One dimensional performance model has been used for the design of torque converter. The model is based on the concept of constant mean flow path and constant flow angle. These constant-assumed para meters make the design procedure to be simple. In practice, some parameters are usually replaced with geometric raw data and, the constant experiential correction factors have been used to minimize the design error. These factors have no definite physical meaning and so they cannot be applied confidently to the other design condition. In this study, the detail dynamic model of torque converter is presented to establish the theoretical background of correction factors. To verify the validity of theoretical model, steady state performance test was carried out on the several input speed. The oil temperature effect on the performance is analysed and adjusted. The constant equivalent flow angles are determined at a part of performance region by comparing the theoretical model and the test data. The sensitivity of correction factors to the input speeds are studied and the change of torus flow is presented.

Development of the Variable Parametric Performance Model of Torque Converter for the Analysis of the Transient Characteristics of Automatic Transmission (자동변속기의 과도특성 분석을 위한 토크 컨버터의 변동 파라미터 성능 모델 개발)

  • 임원식;이진원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.244-254
    • /
    • 2002
  • To enhance the acceleration performance and fuel consumption rate of a vehicle, the torque converter is modified or newly-developed with reliable analysis model. Up to recently, the one dimensional performance model has been used for the analysis and design of torque converter. The model is described with constant parameters based on the concept of mean flow path. When it is used in practice, some experiential correction factors are needed to minimize tole estimated error. These factors have poor physical meaning and cannot be applied confidently to the other specification of torque converter. In this study, the detail dynamic model of torque converter is presented to establish the physical meaning of correction factors. To verify the validity of model, performance test was carried out with various input speed and oil temperature. The effect of oil temperature on the performance is analysed, and it is applied to the dynamic model. And, to obtain the internal flow pattern of torque converter, CFD(Computational Fluid Dyanmics) analysis is carried out on three-dimensional turbulent flow. Correction factors are determined from the internal flow pattern, and their variation is presented with the speed ratio of torque converter. Finally, the sensitivity of correction factors to the speed ratio is studied for the case of changing capacity factor with maintaining torque ratio.

Development of a Conceptual Design Assistance System for Torque Converters Using Hydrodynamic Performance Database (유체동 성능 데이터베이스를 활용한 토크 컨버터 개념 설계 지원 시스템 개발)

  • Kwon, K.;Kim, A.R.;Park, B.K.;Choi, W.;Jang, J.D.;Joo, I.S.;Kim, J.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • The fluid performance is one of the key design factors considered during the development of torque converters especially at conceptual design stages. Therefore the design environment that allows an easy access to legacy data of fluid performance could be critical to reduce the design life cycle as well as to increase the performance of the torque converter. In this paper we present a computer-based system that enables designers to utilize massive legacy data for their design of torque converters. For the implementation of the system we propose a standard format for the legacy data and build them into the database to be efficiently shared by designers in the company. Also we provide numerous analysis tools in the system that allow, for example, database management, data viewing and document generation for search, analysis and reporting. In the paper the implementation of the system is introduced in detail with its effective user interface.

Vibration Analysis of Damper System in Torque Converter (토크 컨버터의 댐퍼 진동 특성)

  • Park, Tae-Jun;Kim, Myung-Sik;Jang, Jae-Duk;Joo, In-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.305-310
    • /
    • 2007
  • This paper presents a damper system design in torque converter to minimize the vibration in powertrain of automatic transmission vehicle. The lock-up clutch in torque converter makes engine and transmission connected directly. When the lock-up clutch is engaged the torque fluctuation of engine is attenuated by the damper system. This function decides the vehicle power-train dynamic characteristics. At first, the dynamic hysteresis effect with any self and surface to surface contact problems of the damper springs in the damper system for torque converter is analyzed by using FEM. It is shown that these simulation results have a good design reference to energy dissipation operating by damper system in torque converter. And, to calculate dynamic characteristics, the vehicle model is structured by using $AMESim^{(R)}$?? that is a common use program. The vehicle model shows the frequency response of vehicle by changing the stiffness of damper spring, and these results lead the most suitable stiffness of spring. Also, new damper system is analyzed resonance frequency variation and is compared with prior damper.

  • PDF

Grid-Connected Variable Speed Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 계통연계형 가변속 풍력발전시스템)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.397-404
    • /
    • 2004
  • This paper proposes a variable speed control scheme of grid-connected wind power generation systems using cage-type induction generators. The induction generator is operated in indirect vector control mode, where the d-axis current controls the excitation level and the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed In order to produce the maximum output power. The generated power flows into the utility grid through the back-to-back PWM converter. The line-side converter controls the dc link voltage by the q-axis current control and can control the line-side power factor by the d-axis current control. Experimental results are shown to verify the validity of the proposed scheme.

Numerical calculation of torque converter flow using interrow mixing model (익렬간 혼합모델을 이용한 토크 컨버터 유동장의 수치계산)

  • Park, Jae-In;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.326-335
    • /
    • 1998
  • In this study, a steady three-dimensional incompressible turbulent flow within a torque converter was numerically analyzed with the introduction of interrow mixing model. Mixing planes were introduced to exchange the flow informations between two adjacent elements of the torque converter. The mixing planes were installed among three elements of the torque converter. Therefore, in the present method, it could be possible to calculate the flow-filed within the torque converter without any assumption of circulating flow rates or any extension of boundaries toward the upstream and the downstream for each element. The numerically calculated performances of the torque converter were in good agreement with experimental results, and the complex flow patterns were be observed according to design and off-design condition. As a conclusion, it was found that the present numerical method was very effective in the steady flow analysis of torque converters.

Analysis of Shifting Transients with Emphasis on the Modeling of a Torque Converter (토크 컨버터의 모델링을 중심으로 한 변속과도 특성해석)

  • 임원식;박영일;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The torque converter, an important component of automatic transmissions, is a hydrodynamic device which has a great influence on transient characteristics of vehicle during shift. To predict the accurate driving performance in extremely transient state such as shifting process, a detailed analysis of the torque converter is required. In this study, one dimensional performance model of the torque converter based on the concept of mean flow path, was used to analyze the shifting transients and the exact values of equivalent parameters were determined from the experimental results by using BOX program. The dynamic modelings of the components of power transmission systems such as engines, planetary gear systems, clutches and one-way clutches, were carried out. To analyze the shifting transients of tracked vehicle, a simulation program was developed. In the modeling of power transmission systems, the stiffness of shafts was neglected and shifting control logic(TCU) was included. Using the developed simulation program, the driving conditions were simulated and the results of simulation were verified through the experiments on the dynamometer.

The Speed Control for Direct Current Motors Using Matrix Converter Topology (매트릭스 컨버터 토폴로지를 이용한 직류전동기 속도제어)

  • Jeong, Bum-dong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.238-245
    • /
    • 2018
  • This paper proposes the applicability of matrix converter topology for the speed control of direct current motors. Matrix convertesr are divided into direct and indirect components. This paper utilizes an indirect matrix converter which is expected to be used widely because of making a variety of output side. The proposed converter has advantages which improves input current shape, has no large energy storage component causing short life. Simulation results are provided to verify effectiveness by comparing and analyzing features of the proposed and conventional topology. The proposed method shows similar performance for speed control, torque control, and load current control compared to a conventional method. Furthermore Harmonics are greatly reduced because the input current is controlled in a manner similar to sinusoidal wave by directly controlling switches at the rectifier stage.

Simulator Development and Performance Analysis of Wind Power System Interconnected with Induction Generator (농형유도발전기로 연계된 풍력발전시스템의 시뮬레이터 개발)

  • Lee, Dong-Geun;Lee, Doo-Young;Han, Byung-Moon;Ko, Jong-Sun;Choi, Nam-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.173-176
    • /
    • 2007
  • 본 논문에서는 풍속이 가변하는 상황에서 풍력 발전 시스템의 동작을 모의 할 수 있는 풍력 터빈 시뮬레이터를 설계 구현하였다. 실제 풍속과 회전 속도를 실시간으로 입력받으며, 토크 계산에 필요한 블레이드의 효율을 주속비에 관한 함수로 처리하여 사용함으로써 복잡한 조작 없이 가변 풍속조건에서 블레이드에 의한 토크입력을 모의할 수 있게 하였다. 또한 풍력터빈 시뮬레이터를 이용하여 농형 유도발전기식 풍력발전시스템을 구성하여 계통에 연계하였을 경우 발생되는 무효전력을 보상하기 위해 펄스 다중화 보조브리지회로를 이용한 새로운 구조의 36-펄스 전압원 컨버터방식의 실시간 무효전력보상기(STATCOM)를 적용하였다. 그리고 동작특성을 분석하고 제어시스템의 성능해석을 위하여 시뮬레이션 프로그램인 EMTDC/PSCAD를 이용한 시뮬레이션을 실시하였으며, 축소모형 하드웨어 실험을 통해 실험을 통한 분석을 실시하였다.

  • PDF