• Title/Summary/Keyword: 토크리플

Search Result 239, Processing Time 0.044 seconds

Development of Fractional Slot Axial Flux Permanent Magnet Synchronous Generator with Low Cogging Torque and Reduced Voltage Regulation (분수슬롯을 가지는 축방향 자속형 영구자석 동기전동기의 코깅토크 및 전압리플 저감에 관한 연구)

  • Choi, Da-Woon;Li, Jian;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1111-1112
    • /
    • 2011
  • This paper investigated application of fractional-slot concentrated-winding axial flux permanent magnet machines for wind turbines. Design criteria of cogging torque and voltage regulation was firstly proposed for this kind of application. Fractional winding has small cogging torque which is highlight for wind turbines, but slot leakage inductance would increase voltage regulation, which is an important performance index of generators. By varying slot opening, cogging torque and slot leakage inductance could be adjusted. In this paper, cogging torque and inductances were calculated by both analytical and finite element methods. Voltage regulation was studied by two-axis model under unity-power-factor load and verified by transient finite element analysis.

  • PDF

Torque Ripple Reduction of BLDG Motors Using Single DC-Link Currant Sensor (DC Link단 단일 전류센서에 의한 브러시리스 직류 전동기의 토크 리플 저감)

  • Baek, Dae-Jin;Won, Chang-Hee;Lee, Kyo-Beum;Choy, Ick;Song, Joong-Ho;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.974-976
    • /
    • 2001
  • This paper presents a method to reduce commutation torque ripples occurred during commutation in brushless do motor drives using a single DC-link current sensor. In brushless dc motor drives with a single dc current sensor instead of 3-phase line current sensors, it is noted that dc-link current sensor cannot give any information corresponding to the motor currents during line current commutation intervals. A new technique to resolve such a problem is dealt with based on a deadbeat current control in which motor armature voltage command is computed from a dc-link current reference, an actual current and counter emf voltage. The simulation results show that the proposed method reduces the torque ripple significantly.

  • PDF

Reduction of Torque Ripple of Permanent Magnet Synchronous Motor (영구자석 동기전동기의 토크 리플 저감 운전)

  • Lee, D.H.;Lee, J.H.;Kim, Y.S.;Kim, J.H.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.918-920
    • /
    • 2001
  • PMSM drives are widely used in industrial and residential applications because of high efficiency, high power density and high performance. For better performance of PMSM, however, torque ripples should be reduced. This paper investigates a reduction of torque ripple due to the unsinusoidal flux linkage produced by the shapes of stator slot and magnetic pole. To minimize torque ripple, a simple flux estimator is proposed. This method iteratively compensates the distributed flux linkage from an error between the measured and estimated currents. The proposed algorithm is verified through simulation.

  • PDF

Rotor & Stator Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 및 고정자 설계)

  • Choi, Yun-Chul;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2145-2149
    • /
    • 2007
  • This paper deals with optimum design criteria to minimize the torque ripple of a concentrated winding Synchronous Reluctance Motor (SynRM) using Response Surface Methodology (RSM). The feasibility of using RSM with the finite element method (FEM) in practical engineering problem is investigated with computational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of stator and rotor in concentrated winding SynRM (6slot).

A Study on comparison Full-pitch and Concentric Winding 3D model of PMSM for Fan-Load (팬부하용 영구자석 전동기의 전절권과 동심권 3D 모델 비교 연구)

  • Yang, Jungsoo;Jun, Hyun-Woo;Lee, Ki-Doek;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.715-716
    • /
    • 2015
  • 영구자석 전동기(Permanent Magnet Synchronous Motor : 이하 PMSM)는 기존 유도전동기에 비해 자속량, 토크 리플 측면에서 우수하다. 또한 모터 제작시 특수모터가 아닌 실용 모터임에 따라 절연재를 위한 공간, 가격대비 효율 등을 고려해야 한다. 본 논문에서는 팬부하용 전동기의 권선형태가 전절권과 동심권을 가질 경우 두 전동기의 특성을 비교하며, 엔드코일의 다른 형태를 통해 볼 수 있는 차이점을 분석 하고자 한다.

  • PDF

Optimum Design on Reduction of Torque Ripple for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 최적설계)

  • Park Seong-June;Lee Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • This paper deals with the optimum design solution on reduction of torque ripple for a Synchronous Reluctance Motor with concentrated winding using response surface methodology. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of a SynRM according to the stator winding, slot number, open width of slot, slot depth, teeth width variation in concentrated winding SynRM, respectively. This paper presents an optimization procedure using Response Surface Methodology (RSM) to determine design parameters for reducing torque ripple. RSM has been achieved to use the experimental design method in combination with finite Element Method (FEM) and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 설계)

  • Park, Jung-Min;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.623-627
    • /
    • 2006
  • This paper deals with the optimum rotor design solution on torque ripple reduction for a SynRM with concentrated winding using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with finite element method (FEM)and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Comparisons are given with characteristics of a SynRM according to flux barrier number, flux barrier width variation, respectively.

Torque Ripple Characteristics Analysis of BLDC Motor According to Current Commutation Angle (전류 전환각에 따른 BLDC 전동기의 토크 리플 특성 해석)

  • Lee, In-Jae;Moon, Ji-Woo;Kim, Byong-Kuk;Han, Sung-Jin;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.970-971
    • /
    • 2006
  • In this paper, analysis of BLDC motor torque ripple characteristic according to current commutation angle. The ideal rectangular current wave and the trapezoidal current wave by current commutation angle and BLDC back-EMF are analyzed mathematically using Fourier series. Moreover, the simulation is performed by Matlab/simulink to compare with experiment results and analyze BLDC motor characteristics.

  • PDF

Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 설계)

  • Park, Jung-Min;Kim, Sung-Il;Hong, Jung-Pyo;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.669-670
    • /
    • 2006
  • This paper deals with the optimum rotor design solution on torque ripple reduction for a SynRM with concentrated winding using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with finite element method (FEM)and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Comparisons are given with characteristics of a SynRM according to flux barrier number, flux barrier width variation, respectively.

  • PDF

Decoupling Current Control Method of Asymmetric Six-Phase Permanent Magnet Synchronous Machine (비대칭 6상 영구자석 동기전동기의 상호 간섭을 고려한 전류 제어 방법)

  • Lim, Gyu Cheol;Han, Yongsu;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.66-68
    • /
    • 2018
  • 6상 전동기는 높은 신뢰성과 토크 리플의 저감 등의 성능 이점으로 인해 다양한 산업 분야에서 고려되고 있다. 6상 전동기는 일반적으로 두 3상 권선의 형태로 모델링할 수 있으며, 독립된 두 개의 전류 제어기를 사용하는 경우, 두 3상 권선 간의 상호 간섭 인덕턴스의 영향으로 인하여 불안정해지는 특성이 있다. 안정적인 전동기 구동을 위하여, 비대칭 6상 전동기의 상호 간섭 영향을 최소화하는 전류 제어기가 필요하다. 이를 위해, 본 연구에서는 이산 영역에서의 6상 전동기의 전류 제어 폐루프 응답 특성을 분석하고 비간섭 (Decoupling) 전류 제어기 구조를 제시한다.

  • PDF