• Title/Summary/Keyword: 토지피복분류방법

Search Result 130, Processing Time 0.029 seconds

Satellite-derived high-resolution land cover classification using machine learning techniques: Focusing on inland wetlands in Korea (머신러닝 기법을 활용한 인공위성 자료 기반 고해상도 토지피복 분류: 국내 내륙습지를 중심으로)

  • Beomseo Kim;Seunghyun Hwang;Jeemi Sung;Hyeon-Joon Kim;Jongjin Baik;Changhyun Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.423-423
    • /
    • 2023
  • 습지 생태계는 탄소저장고, 대기 온·습도 조절 등의 기능을 수행하는 만큼 면밀한 관리가 요구된다. 습지의 규모와 생태계는 밀접한 연관성을 가지므로 그 규모를 우선적으로 파악할 필요가 있으며, 이를 위해 지표면의 상태를 산지, 습지, 수역 등의 항목으로 구분한 토지피복지도가 고려될 수 있다. 현재, 환경부에서 운영 중인 환경공간정보서비스(https://egis.me.go.kr/)에서는 각각 30 m, 5 m, 1 m의 공간 해상도와 7, 22, 41가지 분류 항목을 갖는 대분류, 중분류, 세분류로 구분된 토지피복지도를 제공하며 이러한 자료들은 모두 1년 이상의 시간 해상도를 갖는다. 습지의 경우, 계절에 따른 환경 변화로 인한 규모의 변동성이 크게 나타날 수 있기 때문에 1년 이하의 시간 해상도를 갖는 고품질 토지피복 분류 정보가 요구된다. 따라서 본 연구에서는 기존 자료의 낮은 시간 해상도 보완을 목표로, 1개월과 30 m의 시·공간 해상도를 갖는 토지피복지도를 구축하기 위한 방법론을 제안하고자 한다. 이를 위해 Landsat-8 등과 같은 다양한 인공위성 자료를 수집하고, Support Vector Machine 등과 같은 머신러닝 기법을 적용하였다. 최종적으로 습지보전법에서 지정한 습지보호지역 중 내륙습지 26개소를 대상으로, 본 연구로부터 산출된 토지피복지도를 기존 환경공간정보서비스 내 대분류 토지피복지도와 비교·평가하였다.

  • PDF

Automatic selection method of ROI(region of interest) using land cover spatial data (토지피복 공간정보를 활용한 자동 훈련지역 선택 기법)

  • Cho, Ki-Hwan;Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.171-183
    • /
    • 2018
  • Despite the rapid expansion of satellite images supply, the application of imagery is often restricted due to unautomated image processing. This paper presents the automated process for the selection of training areas which are essential to conducting supervised image classification. The training areas were selected based on the prior and cover information. After the selection, the training data were used to classify land cover in an urban area with the latest image and the classification accuracy was valuated. The automatic selection of training area was processed with following steps, 1) to redraw inner areas of prior land cover polygon with negative buffer (-15m) 2) to select the polygons with proper size of area ($2,000{\sim}200,000m^2$) 3) to calculate the mean and standard deviation of reflectance and NDVI of the polygons 4) to select the polygons having characteristic mean value of each land cover type with minimum standard deviation. The supervised image classification was conducted using the automatically selected training data with Sentinel-2 images in 2017. The accuracy of land cover classification was 86.9% ($\hat{K}=0.81$). The result shows that the process of automatic selection is effective in image processing and able to contribute to solving the bottleneck in the application of imagery.

Land Cover Classifier Using Coordinate Hash Encoder (좌표 해시 인코더를 활용한 토지피복 분류 모델)

  • Yongsun Yoon;Dongjae Kwon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1771-1777
    • /
    • 2023
  • With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.

Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data (다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신)

  • Jang, Dong-Ho;Chung, Chang-Jo F.
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.786-803
    • /
    • 2004
  • These days, interests on land cover classification using not only multi-sensor data but also thematic GIS information, are increasing. Often, although we have useful GIS information for the classification, the traditional classification method like maximum likelihood estimation technique (MLE) does not allow us to use the information due to the fact that the MLE and the existing computer programs cannot handle GIS data properly. We proposed a new method for updating the image classification using multi-spectral and multi-temporal images. In this study, we have simultaneously extended the MLE to accommodate both multi-spectral images data and land cover data for land cover classification. In addition to the extended MLE method, we also have extended the empirical likelihood ratio estimation technique (LRE), which is one of non-parametric techniques, to handle simultaneously both multi-spectral images data and land cover data. The proposed procedures were evaluated using land cover map based on Landsat ETM+ images in the Anmyeon-do area in South Korea. As a result, the proposed methods showed considerable improvements in classification accuracy when compared with other single-spectral data. Improved classification images showed that the overall accuracy indicated an improvement in classification accuracy of $6.2\%$ when using MLE, and $9.2\%$ for the LRE, respectively. The case study also showed that the proposed methods enable the extraction of the area with land cover change. In conclusion, land cover classification produced through the combination of various GIS spatial data and multi-spectral images will be useful to involve complementary data to make more accurate decisions.

Estimation of Classification Accuracy of JERS-1 Satellite Imagery according to the Acquisition Method and Size of Training Reference Data (훈련지역의 취득방법 및 규모에 따른 JERS-1위성영상의 토지피복분류 정확도 평가)

  • Ha, Sung-Ryong;Kyoung, Chon-Ku;Park, Sang-Young;Park, Dae-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.27-37
    • /
    • 2002
  • The classification accuracy of land cover has been considered as one of the major issues to estimate pollution loads generated from diffuse landuse patterns in a watershed. This research aimed to assess the effects of the acquisition methods and sampling size of training reference data on the classification accuracy of land cover using an imagery acquired by optical sensor(OPS) on JERS-1. Two kinds of data acquisition methods were considered to prepare training data. The first was to assign a certain land cover type to a specific pixel based on the researchers subjective discriminating capacity about current land use and the second was attributed to an aerial photograph incorporated with digital maps with GIS. Three different sizes of samples, 0.3%, 0.5%, and 1.0% of all pixels, were applied to examine the consistency of the classified land cover with the training data of corresponding pixels. Maximum likelihood scheme was applied to classify the land use patterns of JERS-1 imagery. Classification run applying an aerial photograph achieved 18 % higher consistency with the training data than the run applying the researchers subjective discriminating capacity. Regarding the sample size, it was proposed that the size of training area should be selected at least over 1% of all of the pixels in the study area in order to obtain the accuracy with 95% for JERS-1 satellite imagery on a typical small-to-medium-size urbanized area.

  • PDF

Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do - (객체기반 분류기법을 이용한 토지피복 특성분석 - 강원도 인제군의 DMZ지역 일원을 대상으로 -)

  • Na, Hyun-Sup;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.121-135
    • /
    • 2014
  • Object-based classification methods provide a valid alternative to traditional pixel-based methods. This study reports the results of an object-based classification to examine land cover in the demilitarized zones(DMZs) of Inje-gun. We used land cover classes(7 classes for main category and 13 classes for sub-category) selected from the criteria by Korea Ministry of Environment. The average and standard deviation of the spectrum values, and homogeneity of GLCM were chosen to map land cover types in an hierarchical approach using the nearest neighborhood method. We then identified the distributional characteristics of land cover by considering 3 topographic characteristics (altitude, slope gradient, distance from the Southern Limited Line(SLL)) within the DMZs. The results showed that scale 72, shape 0.2, color 0.8, compactness 0.5 and smoothness 0.5 were the optimum weight values while scale, shape and color were most influenced parameters in image segmentation. The forests (92%) were main land cover type in the DMZs; the grassland(5%), the urban area (2%) and the forests (broadleaf forest: 44%, mixed forest: 42%, coniferous forest: 6%) also occupied mostly in land cover classes for sub-category. The results also showed that facilities and roads had higher density within 2 km from the SLL, while paddy, field and bare land were distributed largely outside 6 km from the SLL. In addition, there was apparent distinction in land cover by topographic characteristics. The forest had higher density at above altitude 600m and above slope gradient $30^{\circ}$ while agriculture, bare land and grass land were distributed mainly at below altitude 600m and below slope gradient $30^{\circ}$.

Comparison And Investigation on Estimation of SCS-CN in Andong-Dam Basin (SCS-CN 산정방법의 안동댐 유역 적용 및 비교.검증)

  • Lee, Yong-Shin;Lee, Ah-Reum;Park, Kyung-Ok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1094-1098
    • /
    • 2010
  • 미계측 유역에서의 홍수량을 추정할 수 있는 방법은 다양하게 제시되고 있으나, 이에 대한 평가나 조사는 사실상 전무하여 수자원 설계실무에 이용할 수 있는 절차나 방법은 극히 제한되어있다. 현재 주로 이용하고 있는 홍수량 추정절차는 강우를 근거로 한 확률강우량법, SCS방법, 단위도법이 국내의 표준방법으로 이용되고 있다. 또한 수치지도 및 위성영상분석 등과 같은 GIS 자료의 구축이 가능해짐에 따라서, 국내에서는 토양의 종류와 피복 형태 그리고 선행강우조건까지 종합적으로 고려하여 해석하는 유출곡선번호(SCS Runoff Curve Number; CN) 방법이 많이 사용되고 있다. 유출량 해석 시 이용되는 CN은 토지이용도 및 토양도와 같은 지형학적 인자에 지배받게 된다. 그러나 현재 우리나라에서 제공하는 토지이용도 및 토양도는 그 종류가 다양하고, 분류방식이 상이하여 활용 자료에 따라 CN이 달라지므로 유출율의 차이가 발생하게 된다. 국내에서 제공되는 다양한 자료를 이용하여 최적의 CN값을 산정하기 위한 연구가 선행된 바있다. 허기술(1987) 등은 우리나라의 정밀토양도에 의한 토양군 분류에 관한 연구를 진행하였으며 조홍제(1997, 2001)는 LANDSAT 위성영상을 이용하여 유역의 토지피복상태를 분류하고 식생지수를 고려하여 CN을 추정하였고, 김경탁(1998, 2003, 2004)은 개략토양도와 정밀토양도를 이용하여 유출모의 실행한 결과를 비교하여 신뢰도가 높다고 판단되는 정밀토양도를 사용한 CN 추정기법의 사용을 제안한 바 있다. 본 연구에서는 GIS를 이용하여 국내에서 활용 가능한 토양도 및 토지이용도의 종류에 따라 총 9개 Case로 안동댐 유역의 CN을 산정하였다.

  • PDF

Rural Land Cover Classification using Multispectral Image and LIDAR Data (디중분광영상과 LIDAR자료를 이용한 농업지역 토지피복 분류)

  • Jang Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.101-110
    • /
    • 2006
  • The accuracy of rural land cover using airborne multispectral images and LEAR (Light Detection And Ranging) data was analyzed. Multispectral image consists of three bands in green, red and near infrared. Intensity image was derived from the first returns of LIDAR, and vegetation height image was calculated by difference between elevation of the first returns and DEM (Digital Elevation Model) derived from the last returns of LIDAR. Using maximum likelihood classification method, three bands of multispectral images, LIDAR vegetation height image, and intensity image were employed for land cover classification. Overall accuracy of classification using all the five images was improved to 85.6% about 10% higher than that using only the three bands of multispectral images. The classification accuracy of rural land cover map using multispectral images and LIDAR images, was improved with clear difference between heights of different crops and between heights of crop and tree by LIDAR data and use of LIDAR intensity for land cover classification.

Generating Land Cover Map and Estimating Runoff Curve Numbers Using High Resolution Aerial Orthophotos, Impervious Surface Layers and Feature Analyst (고해상도 수치정사 항공사진, 불투수층 레이어 그리고 Feature Analyst를 이용한 토지피복도 작성과 유출계수 산정)

  • Chung Jin-Won;Cheshire Heather M.;Lee Woo-Kyun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.228-231
    • /
    • 2006
  • 유출계수(Runoff Curve Number, CN)란 강수량으로부터 대상유역의 유출량과 우수 잠재능(stormwater potential) 평가에 이용하는 수문학 변수로, 미국 자연자원 보존국(Natural Resources Conservation Service; NRCS)이 제안한 방법이다. 유출계수를 평가하기 위해서는 토지피복, 토양형, 토양 습윤 조건에 대한 정보를 조합하여 분석해야 한다. 본 연구의 목적은 미국 North Carolina의 Raleigh와 Cary시를 관통하는 Walnut Creek 유역 서부지역의 토지 피복도를 제작하여, 이 유역의 유출계수를 산정하는 것이다. 이를 위해서, 첫째 위의 불투수면 레이어와 정사항공사진을 기초자료로, ArcGIS와 Feature Analyst를 이용하여 서부 Walnut Creek 유역의 토지피복도를 제작하였다. 둘째, 제작된 토지 피복도와 본 유역의 수문학적 토양 분류체계도(Hydrologic Soil Group Map)를 중첩하여 이 유역의 유출계수도를 제작하였다.

  • PDF

Improving of land-cover map using IKONOS image data (IKONOS 영상자료를 이용한 토지피복도 개선)

  • 장동호;김만규
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.101-117
    • /
    • 2003
  • High resolution satellite image analysis has been recognized as an effective technique for monitoring local land-cover and atmospheric changes. In this study, a new high resolution map for land-cover was generated using both high-resolution IKONOS image and conventional land-use mapping. Fuzzy classification method was applied to classify land-cover, with minimum operator used as a tool for joint membership functions. In separateness analysis, the values were not great for all bands due to discrepancies in spectral reflectance by seasonal variation. The land-cover map generated in this study revealed that conifer forests and farm land in the ground and tidal flat and beach in the ocean were highly changeable. The kappa coefficient was 0.94% and the overall accuracy of classification was 95.0%, thus suggesting a overall high classification accuracy. Accuracy of classification in each class was generally over 90%, whereas low classification accuracy was obtained for classes of mixed forest, river and reservoir. This may be a result of the changes in classification, e.g. reclassification of paddy field as water area after water storage or mixed use of several classification class due to similar spectral patterns. Seasonal factors should be considered to achieve higher accuracy in classification class. In conclusion, firstly, IKONOS image are used to generated a new improved high resolution land-cover map. Secondly, IKONOS image could serve as useful complementary data for decision making when combined with GIS spatial data to produce land-use map.

  • PDF