• Title/Summary/Keyword: 토지피복/이용 변화탐지

Search Result 56, Processing Time 0.021 seconds

Wildfire-induced Change Detection Using Post-fire VHR Satellite Images and GIS Data (산불 발생 후 VHR 위성영상과 GIS 데이터를 이용한 산불 피해 지역 변화 탐지)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1389-1403
    • /
    • 2021
  • Disaster management using VHR (very high resolution) satellite images supports rapid damage assessment and also offers detailed information of the damages. However, the acquisition of pre-event VHR satellite images is usually limited due to the long revisit time of VHR satellites. The absence of the pre-event data can reduce the accuracy of damage assessment since it is difficult to distinguish the changed region from the unchanged region with only post-event data. To address this limitation, in this study, we conducted the wildfire-induced change detection on national wildfire cases using post-fire VHR satellite images and GIS (Geographic Information System) data. For GIS data, a national land cover map was selected to simulate the pre-fire NIR (near-infrared) images using the spatial information of the pre-fire land cover. Then, the simulated pre-fire NIR images were used to analyze bi-temporal NDVI (Normalized Difference Vegetation Index) correlation for unsupervised change detection. The whole process of change detection was performed on a superpixel basis considering the advantages of superpixels being able to reduce the complexity of the image processing while preserving the details of the VHR images. The proposed method was validated on the 2019 Gangwon wildfire cases and showed a high overall accuracy over 98% and a high F1-score over 0.97 for both study sites.

A Study on the Land Surface Emissivity (LSE) Distribution of Mid-wavelength Infrared (MWIR) over the Korean Peninsula (한반도 중파장적외선 지표 복사율 분포 연구)

  • Sun, Jongsun;Park, Wook;Won, Joong-sun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.423-434
    • /
    • 2016
  • Surface emissivity and its background values according to each sensor are mandatorily necessary for Mid-Wavelength Infrared (MWIR) remote sensing to retrieve surface temperature and temporal variation. This study presents the methods and results of Land Surface Emissivity (LSE) of the MWIR according to land cover over the Korean Peninsula. The MWIR emissivity was estimated by applying the Temperature Independent Spectral Indices (TISI) method to the Visible Infrared Imaging Radiometer Suite (VIIRS) band 4 Day/Night images ($3.74{\mu}m$ in center wavelength). The obtained values were classified according to land-cover types, and the obtained emissivity was then compared with those calculated from a standard Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) spectral library. The annual means of MWIR emissivity of Deciduous Broadleaf Forest (0.958) and Mixed Forest (0.935) are higher than those of Croplands (0.925) and Natural Vegetation Mosaics (0.935) by about 2-3%. The annual mean of Urban area is the lowest (0.914) with an annual variation of about 2% which is by larger than those (1%) of other land-covers. The TISI and VIIRS based emissivity is slightly lower than the ASTER spectral library by about 2-3% supposedly due to various reasons such as lack of land cover homogeneity. The results will be used to understand the MWIR emissivity properties of the Korean Peninsula and to examine the seasonal and other environmental changes using MWIR images.

Comparison of Pixel-based Change Detection Methods for Detecting Changes on Small Objects (소형객체 변화탐지를 위한 화소기반 변화탐지기법의 성능 비교분석)

  • Seo, Junghoon;Park, Wonkyu;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.177-198
    • /
    • 2021
  • Existing change detection researches have been focused on changes of land use and land cover (LULC), damaged areas, or large vegetated and water regions. On the other hands, increased temporal and spatial resolution of satellite images are strongly suggesting the feasibility of change detection of small objects such as vehicles and ships. In order to check the feasibility, this paper analyzes the performance of existing pixel-based change detection methods over small objects. We applied pixel differencing, PCA (principal component analysis) analysis, MAD (Multivariate Alteration Detection), and IR-MAD (Iteratively Reweighted-MAD) to Kompsat-3A and Google Map images taken within 10 days. We extracted ground references for changed and non-changed small objects from the images and used them for performance analysis of change detection results. Our analysis showed that MAD and IR-MAD, that are known to perform best over LULC and large areal changes, offered best performance over small object changes among the methods tested. It also showed that the spectral band with high reflectivity of the object of interest needs to be included for change analysis.

Change Detection of a Small Town Area from Multi-Temporal Aerial Photos using Image Differencing and Image Ratio Techniques (다시기 항공사진으로부터 영상대차법과 영상대비법을 이용한 소도읍 지역의 변화 검출)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Lee, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.116-124
    • /
    • 2008
  • This study presents the application of multi-temporal and multi-scale panchromatic aerial photos for change detection in a small urban area. For aerial photos of the scale of 1:20,000 taken in 1987 and 1996 and the scale of 1:37,500 taken in 2000. Pre-processing that make the same conditions to all of the aerial photos was carried out through geometric correction, registration, contrasting, resamplimg, and mosaicking and then change detection were carried out respectively by image differencing and image ratio techniques. As a result, the change of urban features and landcover were able to be detected from panchromatic aerial photos that is single-band images and then the detected change results were compared between both techniques.

  • PDF

Evaluation of the Utility of SSG Algorithm for Image Restoration of Landsat-8 (Landsat 8호 영상 복원을 위한 SSG 기법 활용성 평가)

  • Lee, Mi Hee;Lee, Dalgeun;Yu, Jung Hum;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1231-1244
    • /
    • 2020
  • Landsat satellites are representative optical satellites that have observed the Earth's surface for a long-term, and are suitable for long-term changes such as disaster preparedness/recovery monitoring, land use change, change detection, and time series monitoring. In this paper, clouds and cloud shadows were detected using QA bands to detect and remove clouds simply and efficiently. Then, the missing area of the experimantal image is restorated through the SSG algorithm, which does not directly refer to the pixel value of the reference image, but performs restoration to the pixel value in the Experimental image. Through this study, we presented the possibility of utilizing the modified SSG algorithm by quantitatively and qualitatively evaluating information on variousl and cover conditions in the thermal wavelength band as well as the visible wavelength band observing the surface.

Extraction of Urban Boundary Using Grey Level Co-Occurrence Matrix Method in Pancromatic Satellite Imagery (GLCM기법을 이용한 전정색 위성영상에서의 도시경계 추출)

  • Kim, Gi Hong;Choi, Seung Pil;Yook, Woon Soo;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.211-217
    • /
    • 2006
  • Growing urban areas modify patterns of local land use and land cover. Land use changes associated with urban expansion. One way to understand and document land use change and urbanization is to establish benchmark maps compiled from satellite imagery. Old satellite Imagery is useful data to extract urban information. CORONA is a photo satellite reconnaissance program used from 1960 to 1972 and its imagery was declassified and has been available to the public since 1995. Since CORONA images are collected with panoramic cameras, several types of geometric distortions are involved. In this study we proposed mathematical modeling method which use modified collinearity equations. After the geometric modeling, we mosaicked images. We can successfully extract urban boundaries using GLCM method and visual interpretation in CORONA (1972) and SPOT (1995) imagery and detect urban changes in Seoul quantitatively.

Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data (VIIRS DNB 영상의 달빛 영향 보정 및 변화 탐지)

  • Lee, Boram;Lee, Yoon-Kyung;Kim, Donghan;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.265-278
    • /
    • 2019
  • Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data help to enable rapid emergency responses through detection of the artificial and natural disasters occurring at night. The DNB data without correction of lunar irradiance effect distributed by Korea Ocean Science Center (KOSC) has advantage for rapid change detection because of direct receiving. In this study, radiance differences according to the phase of the moon was analyzed for urban and mountain areas in Korean Peninsula using the DNB data directly receiving to KOSC. Lunar irradiance correction algorithm was proposed for the change detection. Relative correction was performed by regression analysis between the selected pixels considering the land cover classification in the reference DNB image during the new moon and the input DNB image. As a result of daily difference image analysis, the brightness value change in urban area and mountain area was ${\pm}30$ radiance and below ${\pm}1$ radiance respectively. The object based change detection was performed after the extraction of the main object of interest based on the average image of time series data in order to reduce the matching and geometric error between DNB images. The changes in brightness occurring in mountainous areas were effectively detected after the calibration of lunar irradiance effect, and it showed that the developed technology could be used for real time change detection.

Dimensionality Reduction Methods Analysis of Hyperspectral Imagery for Unsupervised Change Detection of Multi-sensor Images (이종 영상 간의 무감독 변화탐지를 위한 초분광 영상의 차원 축소 방법 분석)

  • PARK, Hong-Lyun;PARK, Wan-Yong;PARK, Hyun-Chun;CHOI, Seok-Keun;CHOI, Jae-Wan;IM, Hon-Ryang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2019
  • With the development of remote sensing sensor technology, it has become possible to acquire satellite images with various spectral information. In particular, since the hyperspectral image is composed of continuous and narrow spectral wavelength, it can be effectively used in various fields such as land cover classification, target detection, and environment monitoring. Change detection techniques using remote sensing data are generally performed through differences of data with same dimensions. Therefore, it has a disadvantage that it is difficult to apply to heterogeneous sensors having different dimensions. In this study, we have developed a change detection method applicable to hyperspectral image and high spat ial resolution satellite image with different dimensions, and confirmed the applicability of the change detection method between heterogeneous images. For the application of the change detection method, the dimension of hyperspectral image was reduced by using correlation analysis and principal component analysis, and the change detection algorithm used CVA. The ROC curve and the AUC were calculated using the reference data for the evaluation of change detection performance. Experimental results show that the change detection performance is higher when using the image generated by adequate dimensionality reduction than the case using the original hyperspectral image.

Analyzing the Spatial Change of Urban Green Spaces with Cell Based Spatial Metrics : A Case Study of Daegu (화소 기반 공간메트릭스를 이용한 도시 녹지의 공간적 변화 분석: 대구시를 사례로)

  • Seo, Hyun-Jin;Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.23 no.1
    • /
    • pp.136-150
    • /
    • 2017
  • This study analyzed the spatial change of urban green spaces in Daegu from 1989 to 2009 using cell based spatial metrics. To do so, the conversion process of land covers during the past 20 years was explored using a land cover change detection matrix. The synoptic analysis with a moving window sampling strategy was conducted to quantify cell based spatial metrics related to size, shape, cohesion, and diversity and to explain the spatial change at the local level. Difference maps were then generated by subtracting the 1989 maps of spatial metrics from the 1998 maps and the 1998 maps from the 2009 maps. The gradient analysis was performed to identify the directional change of spatial metrics along an urban development axis in Daegu. The results from this study show that urban green spaces in Daegu during the past 20 years have been gradually fragmented around the new town housing development districts such as Dalseong-gun, Seongseo, and Ansim. Forests were most prominently fragmented in the Hwawon area while most rapidly in the Chilgok area. Grasslands were largely fragmented in many areas due to the decrease in size and cohesion indices and most fragmented in the Ansim area. The spatial pattern of the decreased and fragmented urban green spaces identified by this study can be used as a base data for establishing the environment-friendly urban development strategy in Daegu.

  • PDF

Analyzing the urban surface temperature characteristic before Cheong-Gye stream restoration using thermal infrared of ASTER image (ASTER 열적외 영상을 이용한 청계천 복원 전의 도시 지표 열 환경 특성 분석)

  • Jo Myung-Hee;Kim Hyung-Sub;Yu Seong-Ok;Kim Sung-Jae;Kim Yeon-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.240-245
    • /
    • 2006
  • 오늘날 도시인구집중화 현상에 따른 대규모 도시개발과 도시역의 확대로 지표면의 피복 변화가 극심하게 이루어지고 있는 한편 이러한 현상으로 인해 도시의 내 외적 경관변화 뿐만 아니라 지형 및 기온상승, 바람장의 변화 등 복합적인 국지기후 변화를 초래하게 되었다. 본 연구에서는 이러한 도시의 기후 변화에 따라 청계천 복원 전의 도시 지표 열 환경 특성을 분석을 수행하고자 한다 도시지역의 열환경 분석을 위하여 기존에는 주로 Landsat TM/ETM+ 위성영상 자료를 사용하였으나 2003년 5월 위성 센서의 고장으로 위성영상 자료의 사용이 불가피하게 되었다. 이에 대체 방안으로 ASTER 영상 열적외 센서에서 취득한 지표온도 값과 현장에서 취득한 AWS자료와의 상관성 분석을 실시하였으며, 이를 기반으로 청계천 주변의 근접성 분석 및 토지이용별 지표온도 분포 패턴 등 도시 열 환경 변화 탐지 및 분석을 위하여 GIS 및 RS 분석을 실시하였다.

  • PDF