• Title/Summary/Keyword: 토양amendment

Search Result 228, Processing Time 0.027 seconds

Stabilization of As and Heavy Metals in Farmland Soil using Iron Nanoparticles Impregnated Biochar (비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가)

  • Koh, Il-Ha;Kim, Jung-Eun;Park, So-Young;Choi, Yu-Lim;Kim, Dong-Su;Moon, Deok Hyun;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.1-10
    • /
    • 2022
  • This study assessed the feasibility of iron oxide nanoparticles impregnated with biochar (INPBC), derived from woody biomass, as a stabilizing agent for the stabilization of farmland soil in the vicinity of an abandoned mine through pot experiments with 28 days of lettuce growth. The lettuce grown in the INPBC amended soils increased by more than 100% and the concentrations of inorganic elements (Cu, Ni, Zn) decreased by more than 40%. As, Cd and Pb were not transferred properly from the soils to the lettuce biomass. The bioavailability of arsenic and heavy metals in the INPBC amended soils were decreased by 26%~50%. It seems that the major mechanisms of stabilization were arsenic adsorption on iron oxides, heavy metal precipitation by soil pH increasing and heavy metal adsorption on organic matter. These results revealed that the lower bioavailability of the inorganic pollutants in the soils stabilized using INPBC induced lower transfer to the lettuce. Thus, INPBC could be used as an amendment material for the stabilization of farmland soils contaminated by arsenic and heavy metals. However, a pre-review of the chemical properties of the amended soil must be performed prior to applying INPBC in farmland soil because the concentration of the nutrients in the soil such as available phosphates and exchangeable cations (Ca, Mg, K) could be decreased due to adsorption on the surface of the iron oxides and organic matter.

Soil Physicochemical Properties by applied with Mixed Ratio Soldier Fly (Hermetia illucens) Casts (동애등애 분변토의 혼합비율에 따른 토양이화학적 특성)

  • Kim, Young-Sun;Lee, Sang-Beom;Ham, Suon-Kyu;Lim, Hye-Jung;Cboe, Young-Cheol
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.106-111
    • /
    • 2011
  • This study was conducted to investigate the effect of the mixture ratio of a soldier fly casts (SFC), compost and cocopeat on the soil physicochemical properties. The mixture ratios of soil amendment were 0%, 3%, 5%, 7% and 10% (V/V) incorporated with sand which met to the USGA particle standard. To analyze the effects of amendments on soil chemical properties, pH and EC were measured. The porosity, capillary porosity, air-filled porosity, bulk density and hydraulic conductivity also measured to analyze the physical properties. Chemical properties were significantly different by mixture ratios of a SFC, compost and cocopeat. Capillary porosity was a factor involved in soil physical properties by blending with a SFC and compost. It was affected on the volume of porosity or hydraulic conductivity. To analyze the correlation of mixture ratio versus to physical characters, the ratios of SFC were significantly different in capillary porosity, air-filled porosity, and hydraulic conductivity. These results indicated that mixing ratios of SFC were affected on soil physicochemical properties such as porosity and hydraulic conductivity of the root zone on the USGA sand green.

Characterization of Clay Minerals in Ranch Pasture

  • Kang, Sangjae;Jang, Jeonghun;Park, Nayun;Park, Junhong;Choi, Seyeong;Park, Man;Lee, Changhee;Lee, Donghoon;Zhang, Yongseon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • This study deals with the distribution of the clay minerals separated from clay fractions of ranch pastures in Korea and their chemical and mineralogical properties. Crystalline phases of the clay minerals were identified by powder X-ray diffraction (XRD) pattern and FT-IR spectra, and their relative chemical compositions were also analyzed by X-ray flourescence spectrometry (XRF). Primary minerals consisted mainly of quartz and mica and chlorite and kaolinite along with a trace of swelling micas were identified as secondary clay minerals. However, the relative content of these clay minerals was different with the locations, which led to significant effects on physical and chemical properties of soils like inorganic elemental composition. In particular, $SiO_2$ content was higher in Gochang ranch pasture than in other ranch pasture. Infrared (IR) spectra did not indicate any significant differences in organic functional groups among the locations. This study clearly showed that ranch pastures had different relative content of clay minerals and chemical properties depending on the location and consequently that those properties are worthy to be taken into account for soil amendment.

Effect of Chemical Amendments on Soil Biological Quality in Heavy Metal Contaminated Agricultural Field

  • Kim, Yoo Chul;Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Ji, Won Hyun;Yang, Jae E.;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.146-152
    • /
    • 2015
  • Heavy metal pollution has been a critical problem in agricultural field near at the abandoned metal mines and chemical amendments are applied for remediation purpose. However, biological activity can be changed depending on chemical amendments affecting crop productivity. Main purpose of this research was to evaluate biological parameters after applying chemical amendments in heavy metal polluted agricultural field. Result showed that soil respiration (SR) and microbial biomass carbon (MBC) were changed after chemical amendments were applied. Among three different amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge(AMDS), AMDS had an effect to increase SR in paddy soil. Comparing to control ($93.98-170.33mg\;kg^{-1}day^{-1}$), average of 30% increased SR was observed. In terms of MBC, SS had an increased effect in paddy soil. However, no significant difference of SR and MBC was observed in upland soil after chemical amendment application. Overall, SR can be used as an indicator of heavy metal remediation in paddy soil.

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho;Lee, Sang-Hwan;Ji, Won-Hyun;Park, Mi-Jeong;Jung, Kang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.627-634
    • /
    • 2016
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.

Salt Removal in a Reclaimed Tidal Land Soil with Gypsum, Compost, and Phosphate Amendment

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.326-331
    • /
    • 2015
  • High salinity and sodicity of soils play a negative role in producing crops in reclaimed tidal lands. To evaluate the effects of soil ameliorants on salt removal in a highly saline and sodic soil of reclaimed tidal land, we conducted a column experiment with treating gypsum, compost, and phosphate at 0-2 cm depth and measured the salt concentration of leachate and soil. Electrical conductivity of leachate was $45-48dSm^{-1}$ at 1 pore volume (PV) of water and decreased to less than $3dSm^{-1}$ at 3 PV of water. Gypsum significantly decreased SAR (sodium adsorption ratio) of leachate below 3 at 3 PV of water and soil ESP (exchangeable sodium percentage) below 3% for the whole profile of soil column. Compost significantly decreased ESP of soil at 0-5 cm depth to 5% compared with the control (20%). However, compost affected little the composition of cations below a depth of 5 cm and in leachate compared with control treatment. It was concluded that gypsum was effective in ameliorating reclaimed tidal lands at and below a soil layer receiving gypsum while compost worked only at a soil layer where compost was treated.

The Effect of Bottom ash in Reducing Cadmium Phytoavailability in Cadmium-contaminated Soil (중금속 오염 농경지 토양에서 바닥재 시용에 의한 카드뮴 식물이용성 저감효과)

  • Kim, Sung Un;Kim, Yong Gyun;Lee, Sang Mong;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Yun, Sung Wook;Kim, Sang Yoon;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.152-157
    • /
    • 2016
  • BACKGROUND: Since bottom ash (BA) contains considerable amounts of CaO and MgO, it could be a useful amendment to increase soil pH and to immobilize cadmium (Cd). This study was conducted to evaluate effect of BA application in reducing Cd phytoavailability.METHODS AND RESULTS: Bottom ash was applied at the rate of 0, 20, 40, and 80 Mg/ha to Cd contaminated soil, and then lettuce was cultivated under field condition. soil pH and net negative charge increased slightly with increasing BA application; however, there was no statistical difference among the rates. Water soluble, exchangeable+acidic, reducible, and oxidizable fraction of Cd decreased with increasing bottom ash application rate, whereas residual fraction of Cd increased with increasing bottom ash application rate. Lettuce yield increased with rate of bottom ash up to 40 kg/ha. Visual evidences of cadmium toxicity and growth inhibition were not found during lettuce cultivation.CONCLUSION: Bottom ash was effective to reduce phytoextractability of Cd and to increase lettuce yield. Conclusively, BA could be a good soil amendment to reduce Cd phytoavailability in contaminated arable soil.

Effect of Polymer, Calcium, Perlite and Chitosan in Soil Organic Amendment on Growth in Perennial Ryegrass (유기질 토양개량재에서 고분자 중합체, 칼슘, 펄라이트 및 키토산이 퍼레니얼 라이그래스의 생장에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.24-34
    • /
    • 2012
  • The study was carried out to investigate the effects of polymer, calcium, perlite and chitosan on the growth of perennial ryegrass (Lolium perenne L., PR) and to provide a basic information needed for their practical application when establishing garden, parks, athletic field and golf courses with these materials. A total of 24 treatment combinations were applied in the study. Treatments were made of water-swelling polymer (WSP), calcium, perlite and chitosan mixed in soil organic amendment (SOA). Germination rate, turfgrass coverage, turfgrass density and top growth were evaluated in PR under greenhouse conditions. Significant differences were observed for these growth characteristics among the treatments. Turfgrass density and plant height, evaluated on a weekly basis, varied with time after seeding. A proper mixing rate of WSP was considered to be lower 3% for the growth of PR with an exception of being below 6% for turfgrass density. Germination rate and early survival capacity were greatly influenced by calcium and chitosan among the elements of calcium, perlite, and chitosan. But there was little effect by perlite. Calcium and chitosan were most effective one for turfgrass density and coverage, respectively. Top leaf-growth was influenced by all three elements, but the greatest effect was highly linked with calcium. Chitosan was very effective in early germination and vertical leaf growth, as compared with the others. Future studies are required for measuring the effect of WSP, calcium, perlite and chitosan on the turf growth characteristics in root zone mixtures of sand+SOA before a practical field use.

Soil Management Measures for Continuous Melon Cultivation in Plastic Film House (참외 연작장해(連作障害) 대책(對策)을 위(爲)한 효과적(效果的)인 토양관리(土壤管理))

  • Chun, Han-Sik;Kang, Sang Jae;Park, Woo Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.351-356
    • /
    • 1997
  • This experiment was aimed to find out the measures or soil managements in continuous melon cultivation and to produce the high quality of yellow melon in plastic film house culture. The experiment was designed with surveying of farmer's field and conducted for 4 years. The most effective measure of soil managements was to cultivate paddy rice in June after harvesting the melon and next ways were treated with submergence or the plastic film for 40days during the period of high temperature of summer and plowed over 50cm depth with plough machine. To decrease the soil problems in continous cultivation, the addition of red earth soil of 500M/T per 10a with increasing the application rates of rice straw and fertilizer (N, P, K) in 30% and 10% respectively was effective in plastic film house culture. The effect of soil amendment application was continued for two years at least and it increased the commercial quality and sugar content in brix of yellow melon in 10% and 2.6 degree respectively.

  • PDF

Recycling Studies for Swine Manure Slurry Using Multi Process of Aerobic Digestion (MPAD) (다중 호기 소화공정을 이용한 양돈분뇨 슬러리의 자원화 연구)

  • Kim, Soo-Ryang;Yoon, Seong-Ho;Lee, Jun-Hee;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.155-160
    • /
    • 2009
  • This study was carried out to investigate the feasibility of Multi Process of Aerobic Digestion (MPAD) for recycling of swine manure slurry as fertilizer. MPAD consisted of three kinds of difference process which are thermophilic aerobic oxidation (TAO) system, lime solidification system, and reverse osmosis (R/O) membrane system. TAO system was studied well previously for decade. The chemical composition of the lime-treated solid fertilizer was as like that organic matter 17.4%, moisture 34.1%, N 0.9%, P 1.7%, K 0.3%, Ca 12.7%, and which was expected to be useful as acid soil amendment material. The concentrated liquid material produced by R/O membrane system was also expected as a good fertilizer for crops production and soil fertility improvement.

  • PDF