• Title/Summary/Keyword: 토양 DNA추출

Search Result 44, Processing Time 0.02 seconds

A Review on the Current Methods for Extracting DNA from Soil and Sediment Environmental Samples (토양 및 퇴적토 환경 시료로부터 DNA 추출하는 방법에 대한 고찰)

  • Yoo, Keun-Je;Lee, Jae-Jin;Park, Joon-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.57-67
    • /
    • 2009
  • In soil and sediment environment, microorganisms play major roles in biochemical cycles of ecological significant elements. Because of its ecological significance, microbial diversity and community structure information are useful as indexes for assessing the quality of subsurface ecological environment and bioremediation. To achieve more accurate assessment, it is requested to gain sufficient yield and purity of DNA extracted from various soil and sediment samples. Although there have been a large number of basic researches regarding soil and sediment DNA extraction methods, little guideline information is given in literature when choosing optimal DNA extraction methods for various purposes such as environmental ecology impact assessment and bioremediation capability evaluation. In this study, we performed a thorough literature review to compare the characteristics of the current DNA extraction methods from soil and sediment samples, and discussed about considerations when selecting and applying DNA extraction methods for environmental impact assessment and bioremediation capability evaluation. This review suggested that one approach is not enough to gain the suitable quantity and yield of DNA for assessing microbial diversity, community structure and population dynamics, and that a careful attention has to be paid for selecting an optimal method for individual environmental purpose.

Application of DNA Probe Method for Detection of 2,4-Dichlorophenoxyacetic Acid Degrading Bacteria in Soil (DNA Probes에 의한 토양의 이사디 (2,4-D) 분해세균의 검출)

  • Ka, Jong-Ok
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.403-408
    • /
    • 1996
  • Total bacterial community DNA, which was extracted from microcosm soil and field soil after 2,4-D amendments, was analyzed on Southern blots, using the tfdA gene probe derived from plasmid pJP4 and the Spa probe from Sphingomonas paucimobilis. Southern blot analyses with total bacterial DNA extracted from soils Inoculated with Pseudomonas cepacia/pJP4 revealed that DNA probe method could detect the 2,4-D degrading bacteria down to $10^5\;cells/g$ dry soil. In the microcosm experiment, there was a good correlation between 2,4-D degradation and banding patterns in hybridization analyses performed after each 2,4-D treatment using the two probes. When bacterial DNA extracted from microcosm soil was hybridized with the Spa probe, a change in the position of hybrid bands was observed over time in a Southern blot, suggesting that population change or possibly genetic rearrangement in 2,4-D degrading microbial populations occurred in this soil. With the Spa probe, one hybrid DNA band was persistently observed throughout the five 2,4-D additions. When bacterial DNA isolated from the field soil was probed with the tfdA and Spa, strong hybridization signal was observed in the 100 ppm-treated subplot, weak signal In the 10 ppm-treated subplot, and no significant signal in the 1 ppm-treated and control subplots. The data show that DNA probe analyses were capable of detecting and discriminating the indigenous 2,4-D degrading microbial populations in soil amended with 2,4-D under laboratory and field conditions.

  • PDF

The Diversity and Similarity of Soil Microbial Communities by DNA Cross Hybrization (DNA 교잡에 의한 토양 미생물 군집의 다양성과 유사성)

  • 김유영;송인근;민병례;조홍범;최영길
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.279-284
    • /
    • 1999
  • To investigate soil bacterial diversity according to vegetation types, directly extracted DNA from 5 different soils were cross-hybridized with each other as a probe and target. Pinus densiflora soil was shown the highest value then agricultured soil>naked soil>grass soil>Quercus mongolicas soil in the order of diversity. Cluster analysis by similarity showed that soil microbial communities were categorized into three groups.

  • PDF

Applied Research of Ultra Sonication for Ancient DNA Preparation of Excavated Human Skeletal Remains (초음파를 이용한 출토 인골 DNA 추출법 연구)

  • Kim, Yun-Ji;Jee, Sang-Hyun;Hong, Jong-Ouk
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.137-148
    • /
    • 2008
  • Analyses of ancient DNA (aDNA) from archaeological and historical skeletal material are characterized by low quality. Many soil contaminants such as humic acid, fulvic acid, and bone collagen are often co-extracted with aDNA and inhibit amplification by polymerase chain reaction (PCR). In this study, we compared with two methods of DNA extraction by phenolchloroform extraction and silica-bead extraction. In addition, we applied new protocol, ultra sonication based silica-bead extraction method to extract aDNA from some ancient human skeletal remains. This method was more effective by both mitochondrial DNA (mtDNA) and amelogenin gene amplification.

  • PDF

Comparison of the Phylogenetic Diversity of Humus Forest Soil Bacterial Populations via Different Direct DNA Extyaction Methods (DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교)

  • Son, Hee-Seong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.

Comparison of metabolic diversity by sole carbon source utilization and genetic diversity by restriction patterns of amplified 16S rDNA (ARDRA)in soil bacterial communities. (토양세균 군집의 대사 다양성과 16S rDNA의 제한효소 지문분석에 의한 유전적 다양성의 비교)

  • 송인근;최영길;김유영;조홍범
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.72-77
    • /
    • 1999
  • To investigate soil bacterial diversity according to vegelalioo types, utilizing ability of sole carbon sources and restriction enzyme patterns of 16s rDNA were analyzed. From the both results; five kinds of soil microbial communities were grouped as forest soil (Quercus mongolica and Pinus densi&ra vegetation), grass-agricultured soil and microbial communities of naked soil. But, both soil microbial communities of directily exlracted from ths soil and indirectly extracted from heterotrophic bacteria that cultured soil in LB medium showed very different similarity.

  • PDF

Detection of Ralstonia solanacearum with Nested PCR and DNA Enzyme-Linked Immunosorbent Assay (Nested PCR과 DNA Enzyme-Linked Immunosorbent Assays를 이용한 Ralstonia solanacearum의 검출)

  • Ko, Young-Jin;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.179-185
    • /
    • 2007
  • In this study, we used the method of guanidin isothiocyanate and boiling with Chelex-100 resin to extract genomic DNA of Ralstonia solanacearum from soil. It is more efficient than general protocols to remove inhibitory compounds in soil and R. solanacearum on. Then, we applied polymerase chain reaction and DNA enzyme-linked immunosorbent assay (ELISA) to identify and detect pathogen. The fliC gene of R. solanacearum was selected for specific detection of pathogen and primer sets were designed. Among the primer sets, two specific and sensitive primer sets, RsolfliC(forward: 5-GAACGCCAACGGTGCGAACT-3 and reverse; 5-GGCGGCCTTCAGGGAGGTC-3, designed by J. $Sch\ddot{o}nfeld$ et al.) and RS_247 (forward: 5-GGCGGTCTGTCGGCRG-3 and reverse; 5-CGGTCGCGTTGGCAAC-3 designed by this study), were designed to perform nested PCR. Nested PCR primer was labeled with biotin for hybridization between nested PCR product and probe to analyze with DNA ELISA.

Comparative Study of Soil Bacterial Populations in Human Remains and Soil from Keundokgol Site at Buyeo (부여 큰독골 유적 출토 인골 조직 및 외부 토양의 세균 군집의 비교연구)

  • Kim, Yun-ji;Kim, Sue-hoon;Kwon, Eun-sil;Cho, Eun-min;Kang, So-yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.92-105
    • /
    • 2014
  • Microbial characteristics of bacterial population were investigated in human remains and soil inside the bones in excavated grave no.4 and no.5 at Keundokgol site, Osu-ri, Buyeo. Phylogenetic characteristics of bacterial populations were analyzed by direct extracting of ancient DNA. In this study, based on the 16S rDNA sequences, in case of grave no.4, 319s from human remain were classified into 11 phyla, and 462s from soil were classified into 16 phyla. In case of grave no.5, 271s from human remain were classified into 10 phyla, and 497s from soil were classified into 11 phyla. Especially, Actinobacteria phylogenetic group are dominant group of bacterial populations in grave no.4 and no.5. Also, most of these were analyzed uncultured group. Thus, the discovery of a diversely microbial community and uncultured group was thought to be due to the specificity of the sample. Conclusively the general excavated human bones were contaminated with soil bacteria species their near around. This results contribute to preservation and management of ancient human bone from archaeological sites.

Effects on soil microbial composition and diversity of the long-term application of organic materials in upland soil (유기물 장기연용에 의한 밭토양 미생물의 변화)

  • An, Nan-Hee;Suh, Jang-Sun;Yoo, Jae-Hong;Lee, Min-Sang
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.302-302
    • /
    • 2009
  • 유기농업에서 유기물은 양분의 공급, 토양의 이화학성 개선, 토양의 생물학적 건전성 유지 등 중요한 역할을 한다. 토양의 생물학적 건전성은 토양의 생태계적 기능을 지속적으로 유지시키는 토양미생물이 관여하고 있다. 따라서 본 연구는 유기물의 장기연용에 따른 밭토양 미생물의 다양성을 비교 분석하였다. 여러 가지 유기자원을 동일한 기준으로 매년 동일 장소에 처리하였다. 사용된 유기자원은 가축분퇴비, 채종유박인 유기질비료, 볏짚으로만 퇴비화한 볏짚퇴비와 겨울철 휴한기에 헤어리베치를 재배하여 이듬해 봄에 예취한 후 토양에 환원한 녹비처리구, NPK구, 가축분퇴비를 혼용처리한 NPK퇴비군, 양분을 전혀 시용하지 않은 무비구 등 총 7처리구였다. 각각의 처리구에서 토양(0-20 cm)을 채취하여 배양성 토양미생물은 희석평판법으로 해당 선백배지에 시료를 도말 하여 조사하였고 비배양성 미생물은 토양으로부터 genomic DNA를 추출하여 세균의 16S rDNA를 증폭시킨 후 denaturing gradient gel electrophoresis (DGGE)를 수행하여 분석하였다. 주요결과를 요약하면 밭토양에 서식하는 토양미생물의 균수는 처리별간의 차이를 보였으며 유기물처리구가 화학비료처리구보다 높았다. DGGE 분석을 통해 유기물 처리에 따른 군집의 다양성을 살펴본 결과 Fig. 1에서 보는바와 같이 Gel 상에서 다양한 위치의 밴드를 확인할 수 있었고 처리별로 특이 밴드가 있음을 확인할 수 있었다. Fig. 1에서 얻은 DGGE profile상의 밴드 강도와 수를 비교하여 Fig 2와 같은 dendrogram을 나타낼 수 있었다.

  • PDF

Korean Paddy Soil Microbial Community Analysis Method Using Denaturing Gradient Gel Electrophoresis (Denaturing gradient gel electrophoresis를 이용한 한국의 논 토양 미생물 다양성 분석 방법)

  • Choe, Myeongeun;Hong, Sung-Jun;Lim, Jong-Hui;Kwak, Yunyoung;Back, Chang-Gi;Jung, Hee-Young;Lee, In-Jung;Shin, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Soil microbes are important integral components of soil ecosystem which have significant and diverse role in organic matter decomposition, nitrogen cycling, and nitrogen fixation. In this study an effective denaturing gradient gel electrophoresis (DGGE) method was employed for paddy soil microbial diversity survey. For optimum paddy soil microbial DNA extraction, different methods such as Lysis buffer, skim milk bead, sodium phosphate buffer, Epicentre Soil Master DNA extraction kit (Epicentre, USA) and Mo Bio Power Soil DNA kit (MO BIO, USA) methods were utilized. Among all the method, using Mo Bio Power Soil kit was most effective. DGGE analysis of Bacteria was carried out at 6% polyacylamide gel and 45-60% denaturing gradient in the optimal conditions. Whereas DGGE analysis of fungi was done at 6% polyacrylamide gel and 45-80% denaturing gradient in the optimal conditions. By applying the above assay, it was found that variation within the microbial community of paddy soil occurs by a factor of time. DGGE assay used in this study through for a variety of soil microbial analysis suggests the potential use of this method.