• Title/Summary/Keyword: 토양 휴민

Search Result 6, Processing Time 0.031 seconds

Sorption of PAHs by Soil Humins and Effect of Soil Inorganic Matrixs (PAHs의 토양휴민과의 흡착특성 및 토양 무기물의 영향 해석)

  • Lim, Dong-Min;Lee, Seung-Sik;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1337-1346
    • /
    • 2006
  • Soil humin is the insoluble fraction of humic materials and play an important roles in the irreversible sorption of hydrophobic organic contaminants onto soil particles. However, there have been limited knowledge about the sorption and chemical properties of humin due to the difficulties in its separation from the inorganic matrix(mainly clays and oxides). In this study, de-ashed soil humins($Hu_1-Hu_6$) were isolated from a soil residues(Crude Hu) after removing alkali-soluble organic fractions followed by consecutive dissolution of the mineral matrix with 2%-HF for 2 hr. The humin samples were characterized by elemental analysis and $^{13}C$ NMR spectroscopic method and their sorption-desorption behavior for 1-naphthol were investigated from aqueous solution. The results were compared one another and that with peat humin. $^{13}C$ NMR spectra features indicate that the soil humin molecules are mainly made up of aliphatic carbons(>80% in total carbon) including carbohydrate, methylene chain. Freundlich sorption parameter, n was increased from 0.538 to 0.697 and organic carbon-normalized sorption coefficient(log $K_{OC}$) values also increased from 2.43 to 2.74 as inorganic matrix of the soil humin removed by HF de-ashing. The results suggest that inorganic phase in humin plays an important, indirect role in 1-naphthol sorption and the effects on the sorption non-linearity and intensity are analyzed by comparison between the results of soil humin and peat humin. Sorption-desorption hysteresis were also observed in all the humin samples and hysteresis index(HI) at low solute concentration($C_e$=0.1 mg/L) are in order of Peat humin(2.67)>De-ashed humin(0.74)>Crude Hu(0.59).

A Study on the Correlations between Molecular Structures of Soil Humins and Sorption Properties of Phenanthrene (토양 휴민(Humin)의 분자구조 특성과 Phenanthrene 흡착상수와의 상관관계에 대한 연구)

  • Lee, Doo-Hee;Eom, Won-Suk;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.897-905
    • /
    • 2013
  • In this study, sorption coefficients (${\log}K_{OC}$, n) for the binding of phenanthrene (PHE) to soil humins, insoluble fraction of soil humc substances (HS), were determined and relationship between the sorption coefficients and structural characteristics of the soil humins were investigated. The soil humins used in the present study were isolated from 7 different soils including 5 domestic soils, an IHSS standard and a peat soil, and characterized by elemental analysis and CPMAS $^{13}C$ NMR method. $^{13}C$ NMR spectral features indicate that the soil humins are mainly made up of aliphatic carbons (57.1~72.3% in total carbon) with high alkyl-C moiety, and the alkyl-C contents ($C_{Al-H,C}$, %) was in order of granite soil Hu (26~42%) > volcanic ash soil, HL Hu (23.9%) > Peat Hu (14.0%). The results of correlation study show that a positive relationship ($r^2$ = 0.77, p < 0.05) between organic carbon normalized-sorption coefficients ($K_{OC}$, mL/g) and alkyl-C contents($C_{Al-H,C}$, %), while negative relationship ($r^2$ = (-)0.74, p < 0.05) between Freundlich sorption parameter (n) and H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %). The magnitude of $K_{OC}$ values are also negatively well correlated with polarity index (e.g., PI, N + O)/C) ($r^2$ = (-)0.74, p < 0.1). These results suggest that the binding capacity (e.g., $K_{OC}$) for PHE is increased in soil humin molecules having high contents of alkyl-C or lower polarity, and nonlinear sorption for PHE increased as the H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %) in the soil humins increased. The PHE sorption characteristics on soil humins are discussed based on the dual reactive mode of sorption model.

피트휴민(peat-Humin)을 이용한 연속흐름에서의 중금속 제거 연구

  • 이창훈;신현상;권순용;강기훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.122-125
    • /
    • 2004
  • 본 연구는 친환경적 유기흡착제로서 휴믹물질의 활용성을 평가하기 위한 기초 연구로서 Peat moss에서 추출된 불용성 휴믹성분인 피트휴민(p-Humin)을 충진한 컬럼을 이용하여 카드뮴과 구리이온에 대한 파과곡선을 얻었고, 각 금속이온에 대한 제거능을 비교해 보았다. 카드뮴의 경우, 파과시간은 7.5 hr, 77 BV로 나타났으며, 구리의 경우, 7.3 hr, 76 BV으로 나타났다. Thomas model로부터 구한 최대 흡착량은 구리가 44.66 mg/g로 카드뮴의 41.61 mg/g보다 높게 나타났다. 0.05 N HNO$_3$를 이용한 탈질실험 결과, 각 중금속에 대한 회수율은 95% 이상으로 높았다.

  • PDF

피트휴민(peat-Humin)과 중금속 흡착반응 연구

  • 이창훈;신현상;임동민;강기훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.135-138
    • /
    • 2004
  • 본 연구는 중금속으로 오염된 폐수처리에 있어 친환경적 유기흡착제로서 휴믹물질의 활용성을 평가하기 위한 기초 연구로서 이탄(peat moss)으로부터 Humin을 분리 한 후, 중금속 이온(Cd(II),Cu(II))과의 흡착특성을 조사하였다. 이탄으로부터 추출한 peat-Humin의 함량은 94%이상을 나타냈으며, 분자의 작용기 특성은 일반 토양 휴믹물질(soil humic substance)과 유사하였다. peat-Humin과 중금속 이온(Cd(II),Cu(II))과의 흡착 반응은 5분내에 빠른 흡착형을 보였으며, pH 5-6에서 가장 높은 중금속 제거율을 보였다. pH 3의 산성조건에서도 50%정도의 제거율을 보였다. pH 5에서의 등온흡착 실험결과를 Freundlich 등온식에 적용하여 해석한 결과, 각의 중금속에 대한 peat-Humin의 흡착상수(Kf)는 Cd(II)이 8.07 그리고 Cu(II)가 4.56으로 나타났다.

  • PDF

Chemical and Spectroscopic Characterization of Peat Moss and Its Different Humic Fractions (Humin, Humic Acid and Fulvic Acid) (피트모스에서 추출한 휴믹물질(휴믹산, 풀빅산, 휴민)의 화학적 및 분광학적 물질특성 규명)

  • Lee Chang-Hoon;Shin Hyun-Sang;Kang Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2004
  • Peat humin(p-Humin), humic acid(p-HA) and fulvic acid(p-FA) were isolated from Canadian Sphagnum peat moss by dissolution in 0.1M NaOH followed by acid precipitation. After purification cycles, they are characterized for their elemental compositions and, acid/base properties. Functionalities and carbon structures of the humic fractions were also characterized using FT-IR and solid state $^{13}C$-NMR spectroscopy. Those results are compared with one another and with soil humic substances from literatures. Main purpose of this study was to present a chemical and spectroscopic characterization data of humic substance from peat moss needed to evaluate its environmental applicability. The relative proportions of the p-Humin, p-HA and p-FA in the peat moss was $76\%,\;18\%,\;and\;3\%$, respectively, based on the total organic matter content ($957{\pm}32\;g/kg$). Elemental composition of p-Humin were found to be $C_{1.00}H_{1.52}O_{0.79}N_{0.01}$ and had higher H/C and (N+O)/C ratio compared to those of p-HA($C_{1.00}H_{1.09}O_{0.51}N_{0.02}$) and p-FA($C_{1.00}H_{1.08}O_{0.65}N_{0.01}$). Based on the analysis of pH titration data, there are two different types of acidic functional groups in the peat moss and its humic fractions and their proton exchange capacities(PEC, meq/g) were in the order p-FA(4.91) >p-HA(4.09) >p-Humin(2.38). IR spectroscopic results showed that the functionalities of the peat moss humic molecules are similar to those of soil humic substances, and carboxylic acid(-COOH) is main function group providing metal binding sites for Cd(II) sorption. Spectral features obtained from $^{13}C$-NMR indicated that peat moss humic molecules have rather lower degree of humification, and that important structural differences exist between p-Humin and soluble humic fractions(p-HA and p-FA).

Relationship between chemical and microbial characteristics of root zone and root growth of gineng (개체별인삼근권(個體別人蔘根圈)의 화학(化學) 및 미생물특성(微生物特性)과 근생육(根生育)과의 관계(關係))

  • Park, Hoon;Lee, Myong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.131-137
    • /
    • 1989
  • Chemical and microbial characteristics of root zone of neighboring large and small ginseng in a high yield field were investigated in relation to root growth. $NO_3-N$, $NH_4-N$, and available P contents were significantly low for large root but Ca high. The contents of $NO_3-N$ or $NH_4-N$ showed significant negative correlation with fine root development. Precipitation quotient of humic acid tended to be high for large roots. The population of one dominant bacteria was significantly high for large root. The ratios of bacteria to fungi or actinomycetes were positively correlated with fine root development.

  • PDF