• Title/Summary/Keyword: 토양 효소 활성

Search Result 352, Processing Time 0.025 seconds

Changes in Soil Physicochemical Properties and Dehydrogenase Activity by the Formation of Fairy Ring of Tricholoma matsutake (송이 균환(菌環)의 발달(發達)에 따른 토양(土壤)의 이화학적(理化學的) 특성(特性)과 탈수소효소(脫水素酵素)의 활성(活性) 변화(變化))

  • Huh, Tae-Chul;Park, Hyun;Chung, Jin-Hyun;Joo, Sung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.270-275
    • /
    • 1998
  • The management of pine-mushroom forest means the environmental control for fairy ring of Tricholoma matsutake. Thus, the management demands intensive study for keeping healthy condition of the fairy ring, and that for the measurement of active portion of the soil ecosystem. This study was conducted to investigate the impact of T. matsutake fungus on the soil physicochemical properties and dehydrogenase activity by dividing the fairy ring into 3 regions such as 'zone of decayed mycorrhizae', 'zone of physiologically active mycorrhizae', and 'in front of fairy ring'. The passing of T. matsutake did not result in significant changes in canon contents of soils, but available phosphorus, carbon, and nitrogen contents were different between the soils of active mycorrhizal zone and that in front of fairy ring. The dehydrogenase activity around the fairy ring of T. matsutake was quite lower than that in general forest soils, which indicated that the fairy ring of T. matsutake was built up in the relatively immature soils which contain little organic matter. Thus, the dehydrogenase activity of soil was thought to be used as an index for the management of pine-mushroom forest with considering that the management practically means the environmental control for keeping good conditions for the development of fairy ring of T. matsutake. Especially, the dehydrogenase activity measurement can be recommended as a tool for time-decision of litter removal by floor raking since the activity is a good index of litter decomposition.

  • PDF

Effect of Combined Application of Bottom Ash and Compost on Heavy Metal Concentration and Enzyme Activities in Upland Soil (밭 토양에서 바닥재와 축분퇴비의 혼합시용이 토양의 중금속 함량 및 효소활성에 미치는 영향)

  • Kim, Yong Gyun;Lim, Woo Sup;Hong, Chang Oh;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.262-270
    • /
    • 2014
  • BACKGROUND: Coal combustion bottom ash(BA) has high carbon and calcium content, and alkaline pH, which might improve nutrient cycling in soil related to microbial enzyme activities as it is used as soil amendment. However, it contains heavy metals such as copper(Cu), manganese (Mn), and zinc(Zn), which could cause heavy metals accumulation in soil. Compost might play a role that stabilize BA. The objective of this study was to evaluate effect of combined application of BA and compost as soil amendment on heavy metals concentration, enzyme activities, chemical properties, and crop yield in upland soil. METHODS AND RESULTS: BA was applied at the rate of 0, 20, 40, and 80 Mg/ha under different rate of compost application (0 and 30 Mg/ha) in radish (Raphanus sativus var) field. Combined application of BA and compost more improved chemical properties such as pH, EC, OM, total nitrogen, available phosphate, and exchangeable cations of soil than single application of BA. Water soluble Mn and Zn concentration in soil significantly decreased with increasing application rate of BA. Decrease in those metals concentration was accelerated with combined application of BA and compost. Urease and dehydrogenase activities significantly increased with increasing application rate of BA. Phosphotase activities were not affected with single application of BA but increased with combined application of BA and compost. Radish yield was not affected by application rate of BA. CONCLUSION: From the above results, combined application of BA and compost could be used as soil amendment to improve chemical properties and enzyme activities of soil without increase in heavy metal concentration and decrease in crop yield in upland soil.

Characterization of Cellulase from Bacillus subtilis NSC Isolated from Soil (토양으로부터 단리한 Bacillus subtilis NSC 유래 Cellulase의 특성 규명)

  • Kim, Sang Jin;Park, Chang-Su
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2018
  • We isolated microorganisms from soil, which is sampled at forest, Kyeonbuk, Korea, as cellulolytic microorganisms. The isolated strains were identified by analysis of 16S rRNA gene from the starins. The result, four kinds of Bacillus subtilis, one kind of Bacillus amyloliquefaciens, and one kind of Bacillus cereus were identified. Among these strains, Bacillus subtilis was selected due to its high cellulase activity and this strain was named as Bacillus subtilis CNS. The optimum pH and temperature of the cellulase from Bacillus subtilis CNS was pH 5.0 and $40^{\circ}C$, respectively. In the investigation of pH and temperature stability, the cellulase from Bacillus subtilis NSC stabled pH 4.0~6.0 range and until $40^{\circ}C$ for 30 min perfectly. In the enzyme activity for various cellulosic substrate, cellulase from Bacillus subtilis CNS showed the highest activity for CM-cellulose. And, the enzyme activities for alkali swollen cellulose, Alpha-cellulose, Sigmacell-cellulose, and Avicel were approximately 31%, 8%, 8% and 4% of activity for CM-cellulose, respectively. In the degradation of CM-cellulose, the 0.26 U/ml and 0.52 U/ml of cellulase showed 0.43 and 0.76 U/ml activity for CM-cellulose after the reaction of 120 min, respectively.

Sources and Variations of Extracellular Enzymes in a Wetland Soil (습지 토양에서 체외효소의 근원과 변화)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.326-330
    • /
    • 2002
  • A wetland soil was sterilised by two methods and changes in microbial enzyme activities were assessed. The short-term effects were determined by toluene addition, while the longer-term effects of elimination was monitored by ${\gamma}$-radiation. The changes in ${\beta}$- glucosidase, ${\beta}$-xylosidase, cellobiohydrolase, phosphatase, arylsulphatase, and N-acetylglucosaminidase activities were determined by using methylumbelliferyl model substrates and comparing with the activities of control samples. Toluene addition induced different responses of enzymes. For example, phosphatase activity increased by the treatment while ${\beta}$-glucosidase and arylsulphatase activities decreased. In contrast, ${\gamma}$-radiation decreased all enzyme activities compared to control by 40-80%. The overall results of the toluene and ${\gamma}$-radiation experiments indicate that the large amounts of enzymes are stabilised outside of living cells, at least in the short term, but that the persistence of enzymes is maintained by de-novo synthesis of microbes.

Effects of a Biological Amendment on Chemical and Biological Properties and Microbial Diversity in Soils Receiving Different Organic Amendments (각기 다른 유기물이 투여된 토양에서 토양의 화학적, 미생물학적 특성과 미생물의 다양성에 미치는 생물비료의 효과)

  • Park, Kee-Choon;Kremer, Robert J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.234-241
    • /
    • 2007
  • Biological amendments consisting of suspensions of selected microorganisms are often used in conjunction with various organic materials for amending soils to improve soil quality and plant growth. The effects of the biological amendment on chemical and biological properties of soil were investigated for a biological amendmentalone and when combined with different organic materials includingmunicipal compost (MC), poultry litter (PL), and cover crops (red clover (RC) and spring oats). A liquid preparation of a biological amendment called Effective Microorganisms was sprayed on the tested plots three times over a two-year period. Effective Microorganisms alone did not influence pH, K, or organic matter content in soil. However, increases in P in PL-treated soils in fall of both years andCa in MC-treated soil in fall 2001, and decreases in Ca, Mg, and cation exchange capacity (CEC) in RC-planted soil were associated with EM. Increased dehydrogenase(DH) activitiesassociated with Effective Microorganismswere only detected in July (P=0.0222) and October (P=0.0834) for RC-planted soils in the first year. Fluorescein diacetate (FDA) hydrolysisappeared to be enhanced by Effective Microorganisms in soils untreated or treated with MC and oatsbut only sporadically during the sampling period. FDA hydrolysis in both PL- and RC-treated soils as well as DH activity in PL-treated soils decreased with Effective Microorganisms treatment. Effective Microorganisms did not influence substrate utilization patterns expressed by the BIOLOG assay. We conclude that Effective Microorganisms effects on soil chemical and biological properties varied depending on the added organic materials. Effective Microorganisms periodically increased soil DH activity and FDA hydrolysis with RC and with MC plus oats, respectively.

Effect of Temperature on Soil Microbial Biomass, Enzyme Activities, and PLFA content during Incubation Period of Soil Treated with Organic Materials (유기물원 항온배양 온도가 토양미생물체량과 효소활성 및 PLFA함량에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Chun, Seung-Joung;Kim, Chun-Hwan;Choi, Kyung-San;Hyun, Hae-Nam;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.500-512
    • /
    • 2009
  • This study was carried out to evaluate the effect of temperature on soil microbial biomass, enzyme activities, and PLFA content in the volcanic(VAS) and the non-volcanic ash soil(NVAS). The soils were treated with organic materials such as organic fertilizer pelleted(OFPL), organic fertilizer powdered(OFPD), pig manure compost(PMC), and food waste compost(FWC). Two grams of organic materials were well mixed with 30g of dried volcanic and non-volcanic ash soil(< 2 mm) with 50% of soil moisture content. And the soils were incubated at 10, 20, $30^{\circ}C$ in incubator. Soils were analysed on the incubation times as followed; soil pH, total nitrogen, organic matter(at 75, 150, 270 days), microbial biomass C and PLFA (at 75, 270 days), microbial biomass N and soil enzyme(at 150, 270 days). pH values of soils treated with PMC and FWC had no changes on soil type, and incubation temperature. However, the pH was increased with temperature in the soils treated with OFPL. The changes in NVAS was higher than in VAS. Soil microbial biomass C content were high in the condition of high temperature and organic fertilizers treatment in VAS. But the contents were gradually decreased with incubation period in both NVAS and VAS. Soil microbial biomass N was high in NVAS treated with organic fertilizers and in VBS treated with PMC and FWC. PLFA content was higher in NVBS than in VBS at 75 days but showed high in VBS at 270 days. Urease activity of NVBS treated with OFPL showed $10^{\circ}C$ (75.0)> $20^{\circ}C$ (16.3)>$30^{\circ}C$ ($4.6ug\;NH{_4-}N\;g^{-1}\;2h^{-1}$) at 150 days. It were decreased gradually high temperature and time passes. And it showed high at $10^{\circ}C$ in VBS. Glucosidase activity was higher in NVBS than in VBS. Correlation coefficient of between soil microbial biomass C and microbial activity indicators showed that PLFA was high significantly at $r^2=0.91$ in NVBS and ${\beta}-glucosidase$ was $r^2=0.83$ in VBS. Soil microbial activities showed differences in the relative sensitivities of soil type and soil temperature.

Effects of Pesticides on Soil Microflora -I. Effects of pesticides on Microflora, Soil Respiration and Enzyme Activity in Soil (농약(農藥)이 토양(土壤) 미생물상(微生物相)에 미치는 영향(影響)에 관(關)한 연구(硏究) -I. 살균(殺菌)·살충제(殺蟲劑)가 토양중(土壤中)의 미생물(微生物), 토양호흡(土壤呼吸) 및 효소활성(酵素活性)에 미치는 영향(影響))

  • Kim, Kwang Sick;Kim, Yong Woong;Lee, Myung Chul;Kim, Hyun Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.375-385
    • /
    • 1987
  • This study was carried out to investigate the effects of pesticides on soil respiration, microflora and enzymes in loam soil, and on pathogenic microorganisms in continuous pepper cropping soil. The results are summarized as follows. No significant effect of pesticides on soil respiration was shown, with the exception of propoxur which slightly increased at $10{\mu}g\;g^{-1}$ treatment. When pesticides were treated, the amount of soil microorganisms generally decreased at the early stage of incubation and the number of microflora was much more decreased at 60-day incubation. When pesticides were treated, the amount of soil enzyme activity was inhibited at the early stage of incubation and gradually recovered at the last stage of incubation. The amount of polygalacturonase activity was increased at the 20-and 30-day incubation in propoxur treatment plot. The amount of ${\beta}$-glucosidase and dehydrogenase activity was increased at 20-and 60-day incubation in carbofuran and acephate treatment plot. The amount of phosphatase activity was increased at 60-day incubation in propoxur and isoprocarb treatment plot. The amount of Fusarium generally decreased in continuous pepper cropping soil, with the exception of isoprocarb and acephate treatment plot which significantly increased. The amount of Pythium increased at 60-day incubation with the exception of captan treatment plot which significantly decreased.

  • PDF

Effect of Consequent Application of Pig Manure Compost on Soil Chemical Properties and Dehydrogenase Activity in Volcanic Ash Soil (돈분퇴비 연용이 감자재배 화산회토양의 화학성과 탈수소 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Won, Hang-Yeon;Koh, Sang-Wook;Hyun, Hae-Nam;Lee, Chong-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • This study were carried out to evaluate effect of consequent application of pig manure compost (PMC) on soil chemical properties, dehydrogenase activity, and yield of potato in volcanic ash soil. The more application rate of PMC increased, the more increased soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), heavymetal (Zn and Cu)contents. When application rate of PMC and crop cultivation times increased gradually, soil dehydrogenase activity was significantly increased. After third cultivation period, dehydrogenase activity showed PMC 2 ton (3.5), PMC 4 ton (6.3), PMC 6 ton (8.0 ug TPF $g^{-1}\;24h^{-1}$), respectively. The activity was twofold higher than first cultivation period. During the third cultivation period, dehydrogenase activity increased linearly comparison to Cu and Zn contents and that was correlated with Cu ($R^2$=0.907) and Zn ($R^2$=0.859) content, respectively. As the application rate of PMC increased, the yield of potato increased, but NPK+PMC 2 ton treatment was more higher than other treatments.

Effects of Composted Pig Manure Application on Enzyme Activities and Microbial Biomass of Soil under Chinese Cabbage Cultivation (돈분퇴비의 시용이 토양의 미생물체량 및 효소활성에 미치는 영향)

  • Weon, Hang-Yeon;Kwon, Jang-Sik;Shin, Yong-Kwang;Kim, Seung-Hwan;Suh, Jang-Sun;Choi, Woo-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.109-115
    • /
    • 2004
  • To elucidate the effects of composted pig manure on soil biochemical properties, composted pig manure was amended in a sandy loam soil and Chinese cabbage was grown. Composted pig manure treatments included 8, 29 and $57Mg\;ha^{-1}$ for CM-08, CM-29, and CM-57 plots, respectively. Biomass contents and enzymes activities in the non-rhizophere soil were measured. Activities of protease, phosphomonoesterase and dehydrogenase in the plot CM-57 increased to 2.3, 1.6, and 2.4 fold as compared with those of the control plot. Soil microbial biomass contents increased in proportion to the application rates of compost and biomass C, N, and P in the plot CM-59 were 4.3, 3.4, 2.8-fold higher than those of control p1ot(no fertilizer), respectively. During cultivation of Chinese cabbage, biomass C and N were higher in the middle growth stage, although biomass P was the highest in the early growth stage. The average ratio of biomass C:N:P was 11:2:1, and proportion of biomass C and N in the soil organic C and N was 1.1 and 3.6%, respectively. Activities of protease and dehydrogenase had significant correlations with biomass C and P.