• 제목/요약/키워드: 토양 유실

Search Result 452, Processing Time 0.029 seconds

Enhancement of SATEEC GIS system using ArcP (ArcPy를 이용한 SATEEC모델의 개선)

  • Lee, Gwanjae;Shin, Yongchul;Jung, Younghun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.515-515
    • /
    • 2015
  • 토양유실량을 산정하기 위한 모델로 Universsal Soil Loss Equation(USLE)가 전 세계적으로 가장 많이 사용되고 있다. USLE 모형은 농경지에서 면상침식(Sheet erosion)과 세류침식(Rill erosion)을 모의할 수 있는 시험포단위 모형(Field-scale)으로 농경지에서 유실된 토양이 하류 하천으로 얼마나 흘러 들어가 하류 수계의 탁수발생과 이에 따른 수질악화에 얼마나 기여하는지, 즉, 유역단위의 토양유실량을 평가하는데 이용될 수 없다. 이러한 단점을 극복하기 위하여 Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView 시스템이 개발되어 사용되고 있다. SATEEC ArcView 시스템은 USLE모형의 입력자료와 DEM만으로 유역면적에 따른 유달률을 산정하여 유역에서 유실된 토양이 얼마만큼 하류로 유달되는지를 모의할 수 있으며, 유역 경사도에 의한 유달률도 산정할 수 있어 지형적인 특성을 좀 더 다양하게 분석 할 수 있게 개발 되었다. 그러나 ArcView는 출시한지 오래되어 사용자가 많지 않고, 프로그램상의 오류가 많고, 대용량의 데이터 처리가 가능한 64비트 운영체제에서는 설치가 불가능한 단점이 있다. 또한, ArcView의 프로그래밍 언어인 Avenue는 클래스를 정의한다거나 상속을 한다거나 하는 문법을 제공하지 않기 때문에 객체지향 언어로 보기에는 부족하다고 할 수 있다. 또한, 최근의 ArcGIS 기반의 많은 모델들이 서로 연계하여 사용하고 있으나, Avenue는 기타 다른 프로그래밍 언어와 연계하여 사용하기가 쉽지 않은 단점이 있다. 그러나 최근 ArcGIS 버전들의 프로그래밍 언어인 Python은 간결하고 확장성이 좋으며, 다른 언어와의 연계가 쉽다. 또한, ArcGIS 10.x버전부터 제공되는 arcpy 모듈은 사용자와의 접근성이 매우 향상되었다. 따라서 SATEEC ArcView 버전을 ArcGIS 10.1 기반의 Python 으로 재개발하여 기존의 불편한 접근성과 대용량 데이터의 처리가 불가능했던 부분을 개선하였다.

  • PDF

Occurrence and Behavior Analysis of Soil Erosion by Applying Coefficient and Exponent of MUSLE Runoff Factor Depending on Land Use (국내 토지이용별 MUSLE 유출인자의 계수 및 지수 적용을 통한 토양유실 발생 및 거동 분석)

  • Lee, Seoro;Lee, Gwanjae;Yang, Dongseok;Choi, Yujin;Lim, Kyoung Jae;Jang, Won Seok
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.98-106
    • /
    • 2019
  • The coefficient and exponent of the MUSLE(Modified Universal Soil Loss Equation) runoff factor in the SWAT(Soil and Water Assessment Tool) model are 11.8 and 0.56 respectively, which are equally applied to the estimation of soil erosion regardless of land use. they could derive overestimation or underestimation of soil erosion, which can cause problems in the selection of soil erosion-vulnerable area and evaluation of reduction management. However, there are no studies about the estimation of coefficients and exponent for the MUSLE runoff factor by land use and their applicability to the SWAT model. Thus, in order to predict soil erosion and sediment behavior accurately through SWAT model, it is necessary to estimate the coefficient and exponent of the MUSLE runoff factor by land use and evaluate its applicability. In this study, the coefficient and exponent of MUSLE runoff factor by land use were estimated for Gaa-cheon Watershed, and the differences in soil erosion and sediment from SWAT model were analyzed. The coefficient and exponent of runoff factor estimated by this study well reflected the characteristics of soil erosion in domestic highland watershed. Therefore, in order to apply the MUSLE which developed based on observed data of US agricultural basin to the domestic watershed, it is considered that a sufficient modification and supplementation process for the coefficient and exponent of the MUSLE runoff factor depending on land use is necessary. The results of this study can be used as a basic data for selecting soil erosion vulnerable area in the non-point source management areas and establishing and evaluating soil erosion reduction management.

Evaluation of SATEEC Daily R Module Considering Spatio-temporal (시공간을 고려한 일단위 SATEEC R 모듈 평가 및 적용)

  • Jang, Chun-Hwa;Ryu, Ji-Chul;Woo, Won-Hee;Kim, Young-Sug;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.48-48
    • /
    • 2012
  • 유역 내 고농도의 탁수문제는 수자원의 효용 가치 하락, 댐 기능의 저하 및 관광 자원으로써의 가치 하락으로 인한 경제적 손실을 발생시킨다. 또한 자원으로서의 토양손실을 야기시켜 토양 재조성을 위한 시간적, 비용적 문제를 발생시킨다. 하천의 탁수저감, 자원으로써의 토양 보전 관리를 위해서는 토양유실 저감 대책을 세우는 것이 필요하며, 이를 위해서는 정확한 토양유실량 및 유사량을 평가하여야 한다. 토양유실량 및 유사량을 평가하기 위해 Sediment Assessment Tool for Effective Erosion Control (SATEEC)이 널리 사용되어 오고 있으며, SATEEC System은 다양한 모듈 보완을 통하여 현재 SATEEC System ver. 2.2까지 개발되었다. SATEEC System ver. 2.2는 시공간변화를 고려한 일단위 R factor산정이 가능하며, 이 R factor산정 모듈은 단일강우를 고려할 수 있는 Williams, Foster, Cooley, CREAMS의 R factor산정 공식을 기반으로 하고 있다. 그리고 SATEEC System ver. 2.2에서는 같은 속성의 셀에 대해서는 함께 연산이 이루어지기 때문에, 유역의 크기나 셀크기에 상관없이 최대 연산시간은 비슷하다. 본 연구에서는 이렇게 개발된 SATEEC System ver. 2.2룰 이용하여 낙동강 수계에 위치한 임하댐유역의 유사량을 평가하였으며, 유사량 평가를 위한 유달률 산정을 위하여 유전자 알고니즘 기반의 SATEEC SDR모듈을 사용하였다. 유사량 평가 결과 보정기간동안 $R^2$ = 0.591, NSE = 0.573, 검정기간 동안 $R^2$ = 0.927, NSE = 0.911로 높은 적용성을 보이는 것으로 나타났다. 본 연구에서 사용된 SATEEC System ver. 2.2는 표토 보전 및 관리를 위한 예비 단계 평가 툴로 활용될 수 있을 것이라 판단된다.

  • PDF

Evaluation of Amending Materials to Reduce Soil Loss from Sloping Remediated Agricultural Land (급경사 복원 농경지 토양 유실 저감을 위한 개량제 효율 및 현장 적용성 평가)

  • Hwang, Wonjae;Park, Minseok;Hyun, Seunghun;Ji, Won hyun;Lee, Sang-Hwan
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.180-185
    • /
    • 2017
  • Restoration of min-impacted arable land is often performed through stabilization of trace elements by amendment treatment combined with (clean) soil covering on the surface. Recently, soil loss problem from sloping remediated agricultural lands has risen as an emerging concern. In this study, efficacy of aggregation formation was assessed by single and binary treatments of four potential amendments (bentonite, lime, organic matter, and steel slag) applied on three cover soils having different clay contents (9.4, 14.7, and 21.2% for A, B, and C soils respectively). In results of single treatments, 5% organic matter for A soil and 5% lime for B and C soils were found most effective for the aggregation formation compared to the respective controls (without amendments). Among nine binary treatments, 3% organic matter + 1% lime for A soil and 1% organic matter + 3% lime for both B and C soils led to the highest formation of aggregation (30.4, 25.0, and 36.5% for A, B, and C soils). For a site-application, the soil erodibility difference between the cover soils (0.045, 0.051, and 0.054 for A, B, and C soils, respectively) and the national average of arable land (0.032) was assumed to be compensated by amendment addition, which is equivalent to 29.1% aggregation formation. To achieve the aggregation goal, 5% lime for A and B soils and 3% lime for C soil were best in the consideration of benefit/cost, thereby effectively and economically reducing soil loss from sloping remediation site. Soil alkalinity induced by lime treatment was not considered in this work.

Runoff and soil loss on newly reclaimed upland (야산개발지(野山開發地)의 토양침식(土壤侵蝕)에 관(關)하여)

  • Jung, Yeong Sang;Shin, Jae Sung;Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 1976
  • In order to investigate inherent erodibility of the soil, which is a major factor is soil erosion prediction, a survey on runoff and soil loss of reclaimed upland soil was carried out by using a portable rainulator. The relations of soil loss and some physical properties of the soil were discussed. The soil erodibility factor for Universal soil loss equation was calculated and compared with that of Wischmeier's nomograph. The result were as follows: 1. Total runoff increased for finer textured soil in order of Jeonnam silty clay loam, Songjeong clay loam, Yesan loam, Samgag and Sangju sandy loam. Total soil loss and soil content in runoff were not correspondently related with textural characteristic in order of Jeonnam, Samgag, Sangju, Yesan, and Songjeong. Total runoff, soil loss, and soil content in runoff were increased for steeper slope. 2. Soil loss and soil content in runoff negatively correlated with organic matter content of surface soil, while positively correlated with dispersion ratio, clay ratio, silt content, and significantly correlated with Middleton erosion ratio for coarser textured soil but not correctly related for finer textured soil. 3. The soil erodibilty factor K values for Universal soil loss equation were 0.32 for Jeonnam, 0.22 for Samgag, 0.17 for Sangju, 0.15 for Yesan, and 0.13 for Songjeong respectively. These values were close to those from Wischmeier's nomograph. So, it seems that the nomograph is useful for estimation of soil loss in Korea.

  • PDF

Analysis of Soil Erosion Hazard Zone using GIS (GIS를 이용한 토양침식 위험지역 분석)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Yeon, Gyu-Bang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.22-32
    • /
    • 2003
  • The purpose of this study is to analyze soil erosion quantity of a basin by using DEM, soil map and landuse map and to find a soil erosion hazard zone in a basin based on this data. In this study, RUSLE was used to analyze soil loss quantity and the research area chosen is Mushim stream which branches off the Geum river. This study used a mean annual precipitation of Cheongju Meteorological Observation was used as a hydrological data and DEM, the detailed soil map(1/25,000), the landuse map collected respectively from Ministry of Environment, National Institute of Agricultural Science and Technology and Ministry of Construction and Transportation. The subject map was drawn to analyze soil erosion hazard zone by using the above data and maps. According to the results of the analysis, a lot of soil loss shows in a bare area. In case of a forest, a slope has a lot of influence on soil loss. The integration and analysis of the above gave the result that $193,730.3m^2$corresponding to 8.5% of the places of which the slope is over 20 degree in a bare area was found to have a higher chance of soil erosion.

  • PDF

Surface Runoff Loss of Nitrogen and Phosphorus from Peach Orchard (복숭아 과수원에서 측정된 강우에 의한 질소와 인의 지표면 유실)

  • Kim, Min-Kyeong;Kim, Bok-Jin;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.124-129
    • /
    • 2000
  • Nitrogen and P in surface runoff and eroded sediment from cropland areas can contaminate streams and lakes. Runoff losses of N and P were determined in a small field plot $(14.3{\times}24.8\;m)$ of peach orchard from March to November in 1999. Nitrogen and P were applied in the rate of 172 and 46 kg/ha using chemical fertilizer and mixed oil cake fertilizer. During the season, in 26 rainfall events, $421.5\;m^3/ha$ of runoff including 1,989 kg/ha of soil loss was collected. Concentrations of total-N, $NO_3-N$, $NH_4-N$, total-P and $PO_4-P$ in runoff samples were in the range of $4.7{\sim}171.0,\;0.1{\sim}188.0,\;0.13{\sim}3.36$, $0.58{\sim}4.99$ and $0.05{\sim}3.71\;mg/l$, respectively. Total loss of N was 16.39 kg/ha and 75% of the loss was $NO_3-N$. Total loss of P was 1.04 kg/ha, and $PO_4-P$ and sediment bound P accounted for 47 and 27% of the total loss, respectively. The losses of N and P were about 9.5 and 2.3% of the applied N and P in the plot, respectively. Although the loss of N or P would be relatively small in agricultural aspect, considering the high concentrations of N and P in runoff, loss of N and P from croplands should be controlled to reduce the eutrophication problem of stream waters.

  • PDF

Discussion of Cropping Management Factor for Estimating Soil Loss (토양유선량(土壤流先量) 예측(豫測)을 위(爲)한 작부인자(作付因子) 검토(檢討))

  • Jung, Pil Kyun;Ko, Mun-Hwan;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 1985
  • The cropping management factor, C, in the Universal Soil Loss Equation (USLE) has been measured on a newly reclaimed Yesan sandy loam of 20% slope under various cropping system. Soil losses measured from lysimeter were 12.9, 5.4, 3.1, and 1.2 ton/10a for clean tilled, corn, barley-soybean, and grass, respectively. The values of C to be utilized in Soil-Loss Equation was obtained as fallows; corn 0.47, upland rice 0.34, barley-soybean 0.18, barley-sweet potato 0.10, grass 0.08, barley-corn 0.34, wheat-soybean 0.25, barley-corn (Soybean) 0.42, barley-corn (sweet potato) 0.37, wheat-sesame 0.20, barley-red pepper 0.18, red pepper 0.32, sesame 0.28, potato-soybean 0.26, respectively. According to the comparisons between the actual soil loss measured by lysimeter and the soil loss predicted by the USLE, the smallest difference of both method came from barley-soybean while the largest came from corn.

  • PDF

Estimation of R-factor for Universal Soil Loss Equation with Monthly Precipitation Data in North Korea (북한 지역의 월 강수량으로부터 토양 유실 예측 공식 적용을 위한 강수 인자 산출)

  • Jeong, Yeong-Sang;Park, Cheol-Soo;Jeong, Pil-Kyun;Im, Jung-Nam;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.87-92
    • /
    • 2002
  • Soil erosion is detrimental to sustain soil productivity in north Korea, since agriculture of this country depends largely upon the slope land in mountainous area. Taking any measure for protection from erosion should be based on prediction of soil loss. Estimation of rainfall factor, R, in north Korea for the Universal Soil Loss Equation was attempted. The monthly precipitation data of the twenty six locations provided by the Korean Meteorological Adminstration were used. From the relationship between II_30 and the July-August precipitation concentration percents, the regional adjustment factor was obtained. The rainfall factor was calculated with the monthly precipitation data and the regional adjustment factor. The annual precipitation in north Korea ranged from 606 to 1,520mm, and the July-August precipitation concentration percents were 34.4 to 53.8. The regional adjustment factor ranged from 0.53 to 1.33 showing lower value in the highland and east coastal region than in the mid mountainous inland and west region. The R-factor value estimated from the monthly precipitation and the regional adjustment factor ranged from 107 to 483, which was lower than average value in south Korea.

Characteristics of Soil Water Runoff and Canopy Cover Subfactor in Sloped Land with Different Soil Texture (경사지 밭토양에서 강우량과 토성에 따른 물 유출 양상 및 수관피복인자 구명)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Park, Chan-Won;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • This study was performed as an effort to reduce soil loss by investigating the phase of water flow according to soil texture and rainfall pattern and by determining the canopy cover subfactor in the RUSLE (revised universal soil loss equation). Red pepper was planted at the 15% sloped lysimeter of $2m{\times}5m{\times}0.5m$ ($width{\times}length{\times}depth$) with three different textured soils (loam, clay loam and sandy loam) and the relationship between amount and intensity of rainfall; soil loss and the amount of runoff; and amount of rainfall and runoff at different soil texture were measured at the experiment station of the National Institute of Agricultural Science and Technology (NIAST) during May to October of 2005. The amount of runoff increased with increasing amount of rainfall, showing difference in the relative increase rate of runoff at different soil texture. The increase rate of runoff with unit increase of rainfall for the lysimeter with red pepper was 0.44, 0.41 and 0.13 for loam, clayey loam and sandy loam, respectively. The minimum amount of rainfall for runoff was 23.53 mm for sandy loam, 10.35 mm for loam and 5.46 mm for clayey loam, respectively. The canopy cover subfactors of red pepper were 0.425, 0.459, and 0.478 for sandy loam, loam and clayey loam, respectively.