• Title/Summary/Keyword: 토양 세척

Search Result 229, Processing Time 0.027 seconds

Distribution and remediation design of heavy metal contamination in farm-land soils and river deposits in the vicinity of the Goro abandoned mine (고로폐광산 주변 농경지 토양 및 하천 퇴적토의 중금속 오염 분포 및 복원 대책 설계)

  • 이민희;최정찬;김진원
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.89-101
    • /
    • 2003
  • River deposits and farmland soils were analyzed to investigate the pollution level of heavy metals in the vicinity of the Goro abandoned Zn-mine. Surface (0-40 cm) and subsurface (40-100 cm) soils were collected around a main river located at the lower part of the Goro mine, and analyzed by ICP-MS for Cd, Cu, Pb, Zn and Cr after 0. 1N HCI extraction and by AAS for As after IN HCI extraction. Concentrations of cadmium and lead at the surface river deposits close to the mine were over the Soil Pollution Warning Limit (SPWL), and 43% of sample sites (6 of 14 samples) were over SPWL for As suggesting that river deposits were broadly contaminated by arsenic. Results from farmland soil analysis showed that surface soils were contaminated by heavy metals, while only arsenic was over SPWL at 50% of sampling sites. Main pollution mechanism around the Goro mine was the discharge of mine tailing and waste rocks from the storage site to the river and to adjacent farmland during flood season. Pollution Grades for sample locations were prescribed by the Law of Soil Environmental Preservation, suggesting that the pollution level of heavy metals around the Goro mine was serious, and the remediation operation fur arsenic and the isolation of mine tailing and waste rocks from river and farmland should be activated to protect further contamination. The area needed to clean up was estimated from pollution distribution data and the remediation methods such as a soil washing method and a soil improvement method were considered as the further remediation operation for arsenic contaminated soils and river deposits around the Goro abandoned mine.

Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils (오염 토양 정화공정에 의한 토양의 특성 변화 및 정화토의 회복기술)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.441-477
    • /
    • 2020
  • There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend of researches on the development of techniques to restore the quality of remediated soils to activate their reuse and recycling. Firstly, the tendency of change in soil properties through remediation processes was looked over, and then the degradation of soil quality was characterized according to the type of remediation processes. Besides, the direction of policy to promote the reuse and recycling of remediated soils was introduced, and finally, the future works needed were suggested. This article was prepared based on the results of the survey of domestic and foreign literature. A number of literature were reviewed to scrutinize the change of soil properties due to remediation processes and diverse techniques for the amendment and restoration of remediated soils. Furthermore, the policies related to the reuse and recycling of remediated soils were arranged with the reference of the first and second versions of the Soil Conservation Master Plan of Korea. The literature survey focused on three kinds of remediation technologies, such as land farming, soil washing, and thermal desorption, which were most frequently used so far in Korea. The results indicate that the tendency of change in soil properties was significantly different depending on the type of remediation processes applied, and the degradation characteristics of soil quality were also totally different between them. The soil amendment and restoration can be categorized as three techniques depending on the type of substances used, such as inorganic, organic, and biological ones. Diverse individual materials have been used, and the soil properties improved or enhanced were dependent on the type of specific materials utilized. However, few studies on the restoration of soil qualities degraded during the remediation processes have not been carried out so far. The second Soil Conservation Master Plan states the quality certification and target management system of remediated soils, and it is expected that their reuse and recycling will be facilitated hereafter. With the consideration of the type of remediation processes implemented and public utility, the restoration technologies of remediated soils should be developed for the vitalization of their reuse and recycling. Besides, practical and specific measures should be taken to support the policy specified in the second Soil Conservation Master Plan and to promote reuse/recycling of remediated soils.

A Tiered Approach of Washing and Stabilization to Decontaminate and Recycle Dredged River Sediment (세척과 안정화기술을 적용한 오염 준설토의 처리 및 재활용 시스템 개발)

  • Kim, Young-Jin;Nam, Kyoung-Phile;Lee, Seung-Bae;Kim, Byeong-Kyu;Kwon, Young-Ho;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • Although the demands for the dredging work have been increasing due to social and industrial reasons including national plan for restoration of four major rivers, environmental standards or management guidelines for the dredged river sediment are limited. The suggested environmental standard for the beneficial use of dredged river sediment consists of two levels, recyclable and concern, and includes eight contaminants such as metals and organic contaminants. The systematic approach to remediate dredged river sediment is also suggested. The system consists of both washing and stabilization processes with continuous multi particle separation. In the early stage, the sediments are separated into two particle sizes. The coarse-grained sediment over 0.075 mm, generally decontaminated with less trouble, follows normal washing steps and is sent for recycling. The fine-grained sediments under 0.075 mm are separated again at 0.025 mm. The particles bigger than this second separation point are treated in two ways, advanced washing for highly contaminated sediments and stabilization for less. The lab test results show that birnessite and apatite are most effective stabilizing agents among tested for Cd and Pb. The most fine residues, down-sized by continuous particle separation, are finally sent for disposal. The system is tested for metals in this study, but is expected to be effective for organic contaminants included in the environmental standard, such as PAH and PCE. The feasibility test on the field site will be followed.

Proposal of Reuse Method of Sorting Soil Produced in Treatment Process of Construction Waste (건설폐기물의 처리공정에서 생산된 선별토사의 활용 방안 제시)

  • Na, Chul-Sung;Kang, Han-Su;Park, Jung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.111-116
    • /
    • 2009
  • In order to verify relevance propriety as material for improving and replacing agricultural land of soil(the rest is sorting soil) produced in treatment process of construction waste, this study executed physical, mechanics and soil analysis test with mixing sorting soil and farm land, crops rearing comparison test with replacing lower layer soil.

  • PDF

Removal of Hydrophobic Contaminant using Amphiphilic Block Copolymer (양친성 블록공중합체를 이용한 소수성 오염원제거)

  • Lee, Junhyup;Shim, Jaeyoul;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.15-19
    • /
    • 2014
  • Spilling pollutants and its contamination to the ground have serious impact to public resulting in various research about remediation techniques. In this study, the use of amphiphilic block copolymer for remediation was investigated with a series of laboratory tests on removal of hydrophobic contaminant in soil. Four types of amphiphilic block copolymer were developed and the efficiency of the cleaning was compared with surfactant using arbitrary diesel-contaminated soils. The results of the study show that the use of amphiphilic polymer in the soil washing process significantly enhanced the remediation of the contaminated soil and a potential of new methodology of eco-friendly remediation.

Removal Characteristics of TPHs and Heavy Metals in Contaminated Soil with Ultrasonic Washing (초음파세척을 이용한 오염토양 내 TPHs 및 중금속 제거특성)

  • Jung, Byung-Gil;Ro, Gi-Hyun;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.473-478
    • /
    • 2009
  • The removal characteristics of total petroleum hydrocarbons (TPHs) and heavy metals in contaminated soils with ultrasonic washing have been studied. The ultrasonic washing was evaluated on a laboratory scale. In this investigation, the effects of factors such as ultrasonic frequency, power intensity, duration of irradiation, contents of the TPHs and heavy metals and mixing ratios between the contaminated soils and water, were considered. Experimental results suggested that the rates for contaminant extraction of the TPHs and heavy metals in the contaminated soil increased considerably with the ultrasonic washing. Therefore, the ultrasonic washing has previously been to be an effective method to remediate the contaminated soils with the TPHs and heavy metals.

Liming Materials and Desalinization of Marine Originated Tidal Soil (석회(石灰)의 종류(種類)와 해성간척지(海成干拓地) 토양(土壤)의 제염(除鹽))

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.107-113
    • /
    • 1990
  • In comparision with calcium sulphate, the effect of calcium-carbonate, -silicate and -hydroxide on desalinization of tidal saline soil was investigated in a continuous leaching column experiments after mixing with an equivalent amount of Ca to sodium plus magnessium in the saline soil. One half of liming materials was mixed to the top one-tenth of column soil and the remainder was spread on the surface. Results obtained are as follows ; 1. Gypsum made easy to percolate and desaline (Na) tidal marine soil but accumulated magnessium in subsoil. 2. $Ca(OH)_2$, $CaCO_3$, and $CaSO_3$ precipitated Mg in the soil which limes were mixed, but they washed down magnessium more severely from the immediate bellow the limed soil and less from the subsequent soil layers. This leaching was more severer at the treatment of $Ca(OH)_2$and lowest at the treatment of $CaSiO_3$. 3. The alkalinity of lime in addition to the dissociation of exchangeable Na raised pH of limed leached tidal soil and slowed down the percolation rate which retarded desalining Na from limed saline soils. This effect was most severe in the $Ca(OH)_2$ treated soil. 4. pH of leached soils was correlated possitively with exchangeable Na and negatively with exchangeable Mg giving follwing relationship pH= 7.77+0.489 Na/Mg r = 0.845.

  • PDF

Influence of Burial Environments on Excavated Ceramics (매장환경이 출토 토기에 미치는 영향)

  • Jang, Sung-Yoon;Nam, Byeong-Jik;Park, Dae-Woo;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.441-450
    • /
    • 2011
  • This study investigated potential damages and conservation methods for the ceramics (without glaze) by examination of physical and chemical effects from the burial environments. For this study, pottery samples excavated from Daejeon Hakha, Asan Eumbong, Hwasung Sogeunsan and Kongju Haengbokdosi were examined with released ions and extraction through desalination. The result showed that the ion inflow into the ceramics was dependent upon the porosity and the absorption of ceramics. The high temperature fired ceramics (over $1,000^{\circ}C$) have low porosity and absorption, therefore almost no salt infiltration during the burial period. However, low temperature fired ceramics (under $800^{\circ}C$) have high porosity and absorption, and most of salts were removed during the desalination. The 40 to 60% of salts were removed in two days and 60 to 80% of slats were released in a week. Furthermore, fertilizer residues such as $K_2SO_4$, in soils were detected in the ceramcis. Also the characteristics of buried soil affected ion infiltration into ceramics. Ceramics buried in sandy soil had relatively less ion contents from buried environments than those in clayey soil. Therefore, low temperature fired ceramics could do not only cleaning but also desalination if it is necessary, and the period could be decided to the condition of ceramics.

농식품 작업장의 오염 실태 조사

  • Lee, Hye-Ok
    • Air Cleaning Technology
    • /
    • v.22 no.2
    • /
    • pp.31-39
    • /
    • 2009
  • 최근 식생활의 다양화와 식품 안전에 대한 관심 증가에 따라 식품 공장의 청정화와 작업장의 위생 관리에 대한 노력이 많이 이루어지고 있다. 그 중에 서도 농식품 분야에서는 최근 들어서 신선한 과일과 채소류를 식품소재로 이용한 신선편이 가공 농산물의 수요가 늘어나고 있다. IFPA(The International Fresh-cut Produce Association)의 정의에 따르면 신선편이 농식품은 박피되거나 절단되어져 신선함을 유지한 채로 소비자들에게 높은 영양과 편이성 및 풍미를 제공하는 포장형태의 100% 이용 가능한 과일 및 채소제품을 말한다. 이러한 신선편이 농식품은 식재료공급에 있어 안전성 및 편이성이 있으나 수확 후 처리시설에 대한 위생 개념이 도입되지 않고는 양질의 식재료를 공급하는 것은 어렵다. 그러나 신선편이 농식품은 살아있는 생체 조직으로 박피, 절단 등의 과정을 거치면서 세포가 파괴되어 급격한 품질 변화가 나타 날 수 있으며, 최소한의 비가열 가공공정만을 거치게 되므로 식품원료 내에 존재하는 미생물이 그대로 유지 될 수 밖에 없는 문제점을 가지고 있다. 또한 일반적으로 선선편이 제품의 가공과정에서 절단 처리시 표면에 묻어 있던 미생물이 과육 부위로 옮겨지면서 식품 세포 조직의 체액을 영양성분으로 활용하여 급격히 증식함으로서 식품의 변질을 일으키거나 섭취시 질병을 일으킬 수 있는 가능성이 있다. 특히, 신선편이 농식품 중에서 가장 많이 소비되는 엽채류는 수확 직후 잎 표면에 토양과 물에 의한 다양한 미생불이 부착되어 식품의 변질 가능성이 크다. 그러므로 농산물의 유통 및 보관단계에서 미생물 오염 가능성이 있기 때문에 신선편이 농식품은 원료 구입 후 제품 생산 및 포장에 이르는 과정에서 각 작업 단계별 위해요소를 분석하고, 식품 안전성을 확보하여 철저한 위생 관리가 중요하다. 따라서 본 자료는 농식품 작업장중 세척공정을 거치는 신선편이농산물과 세척공정을 거치지 않는 신선농식품 작업장에 대한 위생관리 및 관련 설비 기술 개발을 위한 기초 자료로 활용하고자 현재 운영중인 작업장을 중심으로 직접 현지 조사한 자료이다.

  • PDF

Analysis of the effect of Non-point Source pollution generated at rest facilities on highways on the aquatic ecosystem (고속국도 휴게시설 비점오염물질이 수생태계에 미치는 영향 분석)

  • Kwon, Hyeok Joon;Kim, Eui Seok;Choi, Jae Seok;Hong, Eun Mi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.284-284
    • /
    • 2021
  • 비점오염원이란 도시, 도로 포장면, 무허가 가축시설, 무단 경작지 등의 불특정 장소에서 불특정하게 발생하는 오염원을 말한다. 이러한 비점오염원은 주로 강우특성(강수량, 강우강도, 강우지속시간 등)에 영향을 받는 특징을 가지고 있다. 강우시 비점오염원은 주로 불투수면적에서 오염물질이 주변 하천이나 호수에 유입되어 수생태계에 악영향을 미치게 된다. 비점오염원 중 도로 노면에서 발생하는 오염물질은 농지나 가축시설에서 발생하는 오염물질(부유물질 및 유기물) 등과 달리 주로 차량에서 발생하는 오염물질이 주를 이루고 있다. 강우시 토양의 수분포화가 충분히 이루어진 후 강우강도에 따라 유출이 발생하는 농경지와는 달리 도로 노면 유출수는 누적된 오염물질들이 강우시 한꺼번에 유출되기에 강우 초기 채수 간격을 짧게 하여 수질을 분석하는 것이 중요하다. 이에 본 연구에서는 강원도 횡성군을 관통하는 영동고속국도의 횡성휴게소 불투수 노면에서 발생하는 비점오염물질을 알아보기 위해 모니터링 후 수질분석으로 노면 유출수 성분을 알아보고, 오염부하량을 계산하여 유량가중평균농도(EMC, Event Mean Concentration)와 초기세척효과(Mass First Flush effect)을 산정하였다. 이후 타 토지이용에서의 유출 특성과 고속국도 휴게시설에서 발생하는 비점오염물질의 유출 특성에 대해 분석하였다. 추후 본 연구자료는 고속국도와 주변 편의시설 설계시 주변 수생태계에 미치는 영향에 대한 기초자료로 활용할 수 있을 것이다.

  • PDF