• Title/Summary/Keyword: 토양효소

Search Result 503, Processing Time 0.034 seconds

Eco-physiological Responses of Roadside Tree Species to Contamination of Soil with Lead (토양 납 오염에 대한 가로수 식물종의 생리생태적 반응)

  • Kim, Han Eol;Song, Uhram
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.237-246
    • /
    • 2015
  • Heavy metal pollution in soil, such as lead contamination, has become an area of interest in Korea because of urbanization and atmospheric deposition from neighboring countries. Therefore, in this research, eco-physiological responses such as chlorophyll contents, antioxidant enzyme activity, photosynthetic rate, biomass and phytoaccumulation abilities were investigated for 4 commonly used native roadside tree species to suggest suitable tree species to cope with lead contamination. The target species, Ginkgo biloba, Prunus yedoensis, Zelkova serrata and Chionanthus retusus showed lead toxicity by significant changes of chlorophyll contents and antioxidant enzyme activities on treatments over 200 mg Pb/kg. However, biomass and photosynthetic rates only showed significant responses of plants in the highest level (5,000 mg/kg) treatment. Especially, G. biloba did not show any significant changes of antioxidant enzyme activity, photosynthetic rate, and biomass even in the highest level treatment. In low level - environmentally realistic treatments, G. biloba and P. yedoensis showed the highest phytoaccumulation rate of lead from soil. Selecting and planting species like G. biloba which have good phytoaccumulation abilities and resistance to lead contamination by further research will be required to deal with emerging lead contamination.

Effect of Consequent Application of Pig Manure Compost on Soil Chemical Properties and Dehydrogenase Activity in Volcanic Ash Soil (돈분퇴비 연용이 감자재배 화산회토양의 화학성과 탈수소 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Won, Hang-Yeon;Koh, Sang-Wook;Hyun, Hae-Nam;Lee, Chong-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • This study were carried out to evaluate effect of consequent application of pig manure compost (PMC) on soil chemical properties, dehydrogenase activity, and yield of potato in volcanic ash soil. The more application rate of PMC increased, the more increased soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), heavymetal (Zn and Cu)contents. When application rate of PMC and crop cultivation times increased gradually, soil dehydrogenase activity was significantly increased. After third cultivation period, dehydrogenase activity showed PMC 2 ton (3.5), PMC 4 ton (6.3), PMC 6 ton (8.0 ug TPF $g^{-1}\;24h^{-1}$), respectively. The activity was twofold higher than first cultivation period. During the third cultivation period, dehydrogenase activity increased linearly comparison to Cu and Zn contents and that was correlated with Cu ($R^2$=0.907) and Zn ($R^2$=0.859) content, respectively. As the application rate of PMC increased, the yield of potato increased, but NPK+PMC 2 ton treatment was more higher than other treatments.

Response of Microbial Distribution to Soil Properties of Orchard Fields in Jeonbuk Area (전북지역 과수원의 토양특성이 미생물 분포에 미치는 영향)

  • Ahn, Byung-Koo;Kim, Hyo-Jin;Han, Seong-Soo;Lee, Young-Han;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.696-701
    • /
    • 2011
  • This study was conducted to investigate impacts of soil properties on microbial distribution in Jeonbuk orchard fields. Soil samples were collected from 110 sites cultivated with different fruit plants. The population of aerobic bacteria and fungi and the content of soil microbial biomass carbon (C) were found to increase with increasing silt content in the soils. Different activity of dehydrogenase was not observed among the different textures of soil. Microbial distribution, amount of microbial biomass C, and dehydrogenase activity in the soils were not significantly different among the topographic sites. However, in pear and grape fruit plant fields, coliform group of bacteria was found in relatively higher population, $133.0{\times}10^3\;CFU\;g^{-1}$ and $107.4{\times}10^3\;CFU\;g^{-1}$, respectively. Microbial groups were simplified and their density was reduced with increasing the cultivation periods of fruit plants. The soil microbial distribution was proportionally correlated with some of soil properties such as soil pH, soil organic matter (SOM) content, and exchangeable Mg content; in particular, the population of Bacillus sp. was proportionally correlated with soil pH and exchangeable Mg content. The amounts of microbial biomass C and the dehydrogenase activity in the soils were significantly correlated with the contents of SOM and exchangeable Ca ion (p<0.01).

Effect of Temperature on Soil Microbial Biomass, Enzyme Activities, and PLFA content during Incubation Period of Soil Treated with Organic Materials (유기물원 항온배양 온도가 토양미생물체량과 효소활성 및 PLFA함량에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Chun, Seung-Joung;Kim, Chun-Hwan;Choi, Kyung-San;Hyun, Hae-Nam;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.500-512
    • /
    • 2009
  • This study was carried out to evaluate the effect of temperature on soil microbial biomass, enzyme activities, and PLFA content in the volcanic(VAS) and the non-volcanic ash soil(NVAS). The soils were treated with organic materials such as organic fertilizer pelleted(OFPL), organic fertilizer powdered(OFPD), pig manure compost(PMC), and food waste compost(FWC). Two grams of organic materials were well mixed with 30g of dried volcanic and non-volcanic ash soil(< 2 mm) with 50% of soil moisture content. And the soils were incubated at 10, 20, $30^{\circ}C$ in incubator. Soils were analysed on the incubation times as followed; soil pH, total nitrogen, organic matter(at 75, 150, 270 days), microbial biomass C and PLFA (at 75, 270 days), microbial biomass N and soil enzyme(at 150, 270 days). pH values of soils treated with PMC and FWC had no changes on soil type, and incubation temperature. However, the pH was increased with temperature in the soils treated with OFPL. The changes in NVAS was higher than in VAS. Soil microbial biomass C content were high in the condition of high temperature and organic fertilizers treatment in VAS. But the contents were gradually decreased with incubation period in both NVAS and VAS. Soil microbial biomass N was high in NVAS treated with organic fertilizers and in VBS treated with PMC and FWC. PLFA content was higher in NVBS than in VBS at 75 days but showed high in VBS at 270 days. Urease activity of NVBS treated with OFPL showed $10^{\circ}C$ (75.0)> $20^{\circ}C$ (16.3)>$30^{\circ}C$ ($4.6ug\;NH{_4-}N\;g^{-1}\;2h^{-1}$) at 150 days. It were decreased gradually high temperature and time passes. And it showed high at $10^{\circ}C$ in VBS. Glucosidase activity was higher in NVBS than in VBS. Correlation coefficient of between soil microbial biomass C and microbial activity indicators showed that PLFA was high significantly at $r^2=0.91$ in NVBS and ${\beta}-glucosidase$ was $r^2=0.83$ in VBS. Soil microbial activities showed differences in the relative sensitivities of soil type and soil temperature.

Isolation and Identification of Bacteria Producing a Soybean Milk Clotting Enzyme (두유 응고효소 생산균의 분리 및 동정)

  • 하덕모;이철우
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.109-114
    • /
    • 1989
  • Seventeen bacterial strains producing an extracellular soybean milk clotting enzyme were Isolated from 150 soil samples, and identified as Bacillus cereus(8 strains), Bacillus pumilus(8 strains) and Bacillus licheniformis (1 strain). Among them, Bacillus pumilus strain 118 and Bacillus licheniformis strain 192 showed relatively high soybean milk clotting activity. The coagulability of enzymes from these strains decreased as the pH of soybean milk was increased from 6.0 to 7.0. The optimum temperature for soybean milk clotting activity was $65^{\circ}C$.

  • PDF

Impacts of Chemical Properties on Microbial Population from Upland Soils in Gyeongnam Province (경남지역 밭 토양 화학성분이 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.242-247
    • /
    • 2011
  • Soil management for environment-friendly agriculture depends on the effects of soil microbial activities and soil fertility. To improve soil health for the upland crops, this study evaluated a relationship between soil chemical properties and soil microbial diversities at 25 sites in upland soils in Gyeongnam Province. The average nutrients in the upland soils were 1.7 times for available phosphorous, 1.4 times for exchangeable potassium and 1.5 times for exchangeable calcium higher compared to recommend concentrations in the upland soils. We found a significant positive correlation between the soil organic matter and the soil microbial biomass C (p<0.01). Contents of organic matter and dehydrogenase in the inclined piedmont soils were significantly higher than those in the other topographical soils (p<0.05). In addition, concentrations of organic matter and microbial biomass C in the loam soils were significantly higher than in the silt loam soils (p<0.05). In principal component analyses of chemical properties and microbial populations in the upland soils, our findings suggested that available phosphorous should be considered as potential factor responsible for the clear upland soils differentiation. The soil organic matter was positive correlation with Bacillus sp. and fungi, whereas soil pH was also positive correlation with Pseudomonas sp. in upland soils.

Expression and Characterization of Fibrinolytic Enzyme Activity During Earthworm Tail Regeneration (지렁이 꼬리 재생시 발현되는 피브리노겐 분해효소의 활성과 특성에 관한 연구)

  • Tak, Eun-Sik;Cho, Sung-Jin;Kim, Jae-Young;Lee, Kyu-Seok;Park, Soon-Cheol
    • The Korean Journal of Soil Zoology
    • /
    • v.4 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • Fibrinolytic enzyme is thought to be involved in extracellular matrix remodeling during regeneration. We investigated the expression and characterization fibrinolytic enzyme activity during earthworm tail regeneration. Electrophoretic analysis of fibrinolytic enzymes induced during regeneration revealed that at least seven types of fibrinolytic enzymes were expressed, which had molecular weight of 12, 19, 23, 27, 32, 45 and 58 kDa, respectively. These fibrinolytic enzyme activities were dramatically increased within 1 day after amputation. These activities were maintained by 7 days postamputation, followed by decrease to control level from 14 days after amputation. Alltypes of fibrinolytic enzyme activities were inhibited by treatment of PMSF and aprotinin, and were insensitive to EDTA and exogenous Ca$^{2+}$. These results indicate that the fibrinolytic enzymes are serineproteinase. Other characteristics including specificities for extracellular matrix proteins are under investigation. Based on these results, we are trying to find out the relationship among expression of proteinases, extracellular matrix remodeling, and dedifferentiation, which are believed to be essential processes during regeneration.

  • PDF

Isolation and Characterization of Pectinase-Producing Bacillus sp. BS-214 (Pectinase를 생산하는 Bacillus sp. BS-214의 분리 및 특성)

  • 전병삼;차재영;송재영;이강덕;김범규;이영춘
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.101-106
    • /
    • 2000
  • A bacterial strain BS-214 producing extracellular pectinase was isolated from soil. The isolated bacterium was identified as a strain of Bacillus so. based on the morphological, biochemical, and physiological characteristics. Cell growth and pectinase activity of Bacillus sp. BS-214 were reached to a mixium in the culture condition of pH 8.5 at 4$0^{\circ}C$. Production of pectinase by the strain was the highest when polygalacturonic acid was added to culture medium as a carbon source, and its optimal concentration was 1%. Also, yeast extract was used as the best nitrogen source for the production of pectinase by the concentration of 0.25%. Decomposition of a constituent of Edzeworthia papyrifera by the strain was observed by scanning electron microscope.

  • PDF