• Title/Summary/Keyword: 토양처리제

Search Result 757, Processing Time 0.029 seconds

Effects of Herbicides on Enzyme Activities in Soil Environment (제초제(除草劑)가 토양환경중(土壤環境中) 효소활성(酵素活性)에 미치는 영향(影響))

  • Kim, Jang-Eok;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.31 no.1
    • /
    • pp.79-85
    • /
    • 1988
  • The effects of herbicides on biochemical processes in soil environment were studied by examining the effects of the chemical structure of each herbicides on soil enzyme activities and pesticides residue revealed when soil treated with urea was incubated at $28{\pm}1^{\circ}C$ for 56 days. The inhibition effects of herbicides on soil enzyme activites in soil decreased in the order of urea group>dinoseb>propanil>diphenyl eter group>acid amide group for urease, and dinoseb>urea group>diphenyl ether group>acid amide group for L-glutaminase and protease, dinoseb>diphenyl ether group>urea group>acid amide group for phosphatase. Herbicides inhibited the activities of soil enzyme in the early stage of treatment but increased the activities of urease, L-glutaminase and protease in the late stage. When herbicides were treated in soil together with urea the degradation of insecticides was accelerated.

  • PDF

Effects of Soil Conditioner "Uresol and Bitumen" Treatments on Water Movement and Soil Loss II. The Changes of Wetting Angle and Water Diffusivity (토양개량제(土壤改良劑) Uresol 및 Bitumen처리(處理)가 토양(土壤)의 수분이동(水分移動)과 유실(流失)에 미치는 영향(影響) II. 습윤각(濕潤角)과 수분(水分)의 광산계수변화(鑛散係數變化))

  • Jo, In-Sang;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.12-17
    • /
    • 1984
  • In order to find out the effects of soil conditioner treatment on the water movement in sandy loam and silt loam soils were treated with two different kinds of soil conditioners, hydrophobic Bitumen 0.4% or hydrophillic Uresol 0.6%, and the changes of wetting angle (soil-water contact angle), penetrability and diffusivity were measured. The results were summarized as follows: 1. Uresol 0.6% treatment decreased the wetting angle of sandy loam more than $10^{\circ}$, but there was no big difference in silt loam. 2. Sandy loam soil was changed to almost hydrophobic and the wetting angle of silt loam soil was increased to $84.9^{\circ}$ as compared to $76.0^{\circ}$ of untreated soil by Bitumen 0.4% treatment. 3. By Uresol treatment, penetrability of sandy loam was doubled but there was not difference in silt loam, and it was decreased to half in two soils by Bitumen treatment. 4. A significant positive correlation between penetrability and the cosine of wetting angle was recognized. 5. Soil water diffusivity was greatly changed by soil conditioner treatment, and the big differences were appeared at lower soil moisture content.

  • PDF

방선균으로부터 생산되는 adenosine deaminase의 저해제 연구

  • 김경자
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.139-140
    • /
    • 1993
  • 토양으로부터 Actinomycetes 분리: Actinomycetes는 항생물질이나 항암물질을 많이 생산하는 중요한 균주로 의학계나 농업분야에 널리 이용되고 있다. Adenosine deaminase 저해제를 생산하는 균주를 찾기 위해 토양으로부터 actinomycetes를 분리하였다 Suluble-starch-casein배지와 AS-1배지를 이용하였는데 이들은 탄소원으로 용해성 전분을 공통적으로 함유하고 있다. 나무밑이나 산, 언덕등의 건조한 토양이나 두엄이나, 두엄밑의 토양을 탄산칼슘을 처리하여 주었을 때 actinomycetes가 많이 생장하는 것으로 알려져 있으므로 이러한 흙들을 채취하여 actinomycetes 분리에 이용하였다.

  • PDF

Influence of Gypsum, Popped Rice Hulls and Zeolite on Contents of Ca2+, Mg2+, Na+, K+ in Reclaimed Tideland Soils in Kyehwado (계화도 간척지에서 석고, 팽화왕겨 및 제올라이트 처리가 토양 중 양이온 함량에 미치는 영향)

  • Baek, Seung-Hwa;Lee, Sang-Uk;Lim, Hyo-Bin;Kim, Dae-Geun;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The effect of application of gypsum (G), popped rice hulls (PRH), and zeolite (Z) in exchangeable cations concentrations of reclaimed tideland soil in Kyehwado was investigated for 3 years from 2004 to 2006 in a pot experiment with bermuda grass (Cynodon dactylon). Treatments with three soil conditioner and with three applications were established with three replications; G1 (1,550 kg $10a^{-1}$), G2 (3,100), and G3 (6,200) for gypsum, H1 (1,000), H2 (2,000), and H3 (3,000) for PRH, and HZ1 (200), HZ2 (400), and HZ3 (800) for co-application of zeolite with PRH at the 1,500 kg $10a^{-1}$. At 60, 90, 120 days after treatment (DAT), exchangeable cations ($K^+$, $Na^+$, $Mg^{2+}$, and $Ca^{2+}$) were analyzed Gypsum application significantly decreased $k^+$, $Na^+$, $Mg^{2+}$ in the soil probably due to exchange and subsequent leaching of these cations by $Ca^{2+}$ from the gypsum applied. Overall, $K^+$ concentration was gradually decreased by continuous application of soil conditioners and was in the order of 2004>2005>2006 regardless of the kinds and application rate of soil conditioners. Comparing $K^+$ concentrations among the soil conditioners in the same year, its concentration was in the order of gypsum$Na^+$ concentration; i.e. $Na^+$ concentration was in the order of gypsum$\ll$PRH$Mg^{2+}$ also showed a similar pattern to $Na^+$. Gypsum application significantly increased $Ca^{2+}$ concentration and in the gypsum treated soil $Ca^{2+}$ concentration increased with years.

Effects of Organic Amendments on Introducing Pioneer Herbaceous Plants in the Abandoned Zinc Mine Soil Revegetation (아연 폐광산에 식생도입을 위한 유기성 토양 개량제의 처리효과)

  • Kim Dae-Yeon;Lee Sang-Hwan;Jung Jin-Ho;Kim Jeong-Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.43-51
    • /
    • 2006
  • Generally abandoned mine soils have serious problems for introducing vegetation such as nutrient deficiency, poor physical properties, and phytotoxicity due to high levels of heavy metals. It is required to improve soil amenity for revegetation. One of its strategies is using organic materials such as compost manure and sludge. The pot experiments was conducted to evaluate the effects of pig manure and municipal sewage sludge on revegetation of mining area soil surface with Artemisia princeps and Zoysia japonica. Application rate of pig manure and municipal sewage sludge was $75{\sim}225$ Mg/ha and $150{\sim}450$ Mg/ha, respectively. The results showed that the application of manure and sludge increased organic matter about two-fold and total nitrogen contents about five-fold of mine soil and improved the growth of plants in all treatments compared to the control. The result of plant tissue analysis showed that both plants accumulate Cd, Cu and Zn in root tissue rather than shoot tissues. Increased sludge application reduced Zn accumulation in both plant tissue. Sequential extraction results indicated that addition of soil amendment induced increment of organically bound fractions of Cu and Zn. Organically bound fraction of Zn was significantly increased from 7.84% to 13.58% in Artemisia princeps planted soil and from 7.84% to 14.16% in Zoysia japonica planted soil, thereby bioavailability of heavy metals was reduced. The results suggested that application of organic materials to mine soil can reduce phytotoxicity of heavy metals and be helpful in introducing successful revegetation.

Bioremediation Efficiency of Oil-Contaminated Soil using Microbial Agents (토양미생물 복원제를 이용한 유류로 오염된 토양의 복원)

  • Hong, Sun-Hwa;Lee, Sang-Min;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Oil pollution was world-wide prevalent treat to the environment, and the physic-chemical remediation technology of the TPH (total petroleum hydrocarbon) contaminated soil had the weakness that its rate was very slow and not economical. Bioremediation of the contaminated soil is a useful method if the concentrations are moderate and non-biological techniques are not economical. The aim of this research is to investigate the influence of additives on TPH degradation in a diesel contaminated soil environment. Six experimental conditions were conduced; (i) diesel contaminated soil, (ii) diesel contaminated soil treated with microbial additives, (iii) diesel contaminated soil treated with microbial additives and the mixture was titrated to the end point of pH 7 with NaOH, (iv) diesel contaminated soil treated with microbial additives and accelerating agents and (v) diesel contaminated soil treated with microbial additives and accelerating agents, and the mixture was titrated to the end point of pH 7 with NaOH. After 10 days, significant TPH degradation (67%) was observed in the DSP-1 soil sample. The removal of TPH in the soil sample where microbial additives were supplemented was 38% higher than the control soil sample during the first ten days. The microbial additives were effective in both the initial removal rate and relative removal efficiency of TPH compared with the control group. However, various environmental factors, such as pH and temperature, also affected the activities of microbes lived in the additives, so the pH calibration of the oil-contaminated soil would help the initial reduction efficiency in the early periods.

Residue of Herbicide Napropamide and Change of Microorganism in Upland Soil Under Different Environmental Conditions (환경조건 차이에 따른 밭 토양중 제초제 Napropamide의 잔류 및 토양미생물상 변화)

  • Han, S.S.;Jeong, J.H.;Choi, C.G.
    • Korean Journal of Weed Science
    • /
    • v.14 no.4
    • /
    • pp.298-313
    • /
    • 1994
  • Residue of herbicide napropamide [N,N-dimethyl-2-(1-napthoxy)-propionamide] and change of micro-organism were investigated in upland soil under different environmental conditions. Half-lives of degradation were 28.3 days in the sterile soil and 14.6 days in the nonsterile soil, respectively. These results suggest that microorganism remarkably affected the decomposition of napropamide. Napropamide was rapidly degraded in order of 60% > 80% ${\geq}$ 40% soil moisture content of field water-holding capacity. Numbers of bacteria and total microbes in 60% moisture content was more than those in 40% moisture content. The more the napropamide degradation was rapid in lower soil pH. The total number of microorganism increased by lapse of time after treatment of napropamide at pH 5.5. The decomposition rate of napropamide was rapid in the order of $27^{\circ}C$ > $37^{\circ}C$ > $17^{\circ}C$. At $17^{\circ}C$ of soil temperature actinomycetes in napropamide treatment plot was more than these in nontreatment plot and also at $27^{\circ}C$ and $37^{\circ}C$ bacteria in napropamide treatment plot was more than those in nontreatment plot. Napropamide degradation was more rapid and number of microorganism was more abundant at the concentration of 10ppm than at that of 20ppm. The half-life of napropamide was longer in the clay loam soil than in the silty loam soil. The half times in laboratory test than in upland field. Numbers of microbes in the experiment under all the test environmental condition was not significantly different between treatment and nontreatment of napropamide.

  • PDF

Study for Sequential Application of Herbicide to Establish an Efficient Weed Control in Red Pepper Field (고추 밭 잡초 관리를 위한 제초제 체계 처리법 개발)

  • Min, Yi-Gi;So, Yoon-Sup
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.213-218
    • /
    • 2016
  • Timely application and the choice of herbicides are crucial for red pepper production since the yield is significantly reduced by weed occurrence. Experiments were conducted to provide efficient weed control methods in red-pepper fields. The results suggest the followings: 1) in the field of prevalent grass weeds, application of pendimethalin EC as pre-emergence herbicide after transplanting followed by tank-mix with pendimethalin and fluazipfop-P-butyl EC as post-emergence at 3-5 leaf stage of Digitalia species gave a good control for 80 days without crop injury, 2) as for grass and other weeds occurrence, sequential application of tank-mix with glufosinate-ammonium SL and pendimethalin at 30 days after transplanting (DAT) followed by glufosinate-ammonium. at < 20 cm of weed height with 30 days' interval provided better weed control than 2-time application of glufosinate-ammonium. single application for 80 days in this trial. 3) To prevent from drifting of non-selective herbicide spray mist into red-pepper at furrow application, glufosinate-ammonium. should be applied at 15 cm of spray nozzle height at 20 DAT (18 cm tall of red pepper), and the spray nozzle should be placed below 30 cm above ground to keep spray drift minimum to red pepper with > 40 cm plant height at 40 DAT.

Sorption and Leaching Characteristics of Diesel-Contaminated Soils Treated by Cold Mix Asphalt (Cold Mix Asphalt로 처리한 디젤 오염 토양의 흡착 및 용출특성)

  • Seo Jin-Kwon;Hwang Inseong;Park Joo-Yang
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2004
  • A cold mix asphalt (CMA) treatment process was proposed as a tool to recycle soils contaminated with petroleum hydrocarbons. Experimental studies were conducted to characterize performances of the CMA process in treating soils contaminated with diesel or diesel compounds. From the screening experiments, it was found that performances of five types of asphalt emulsions that contained a cationic or an anionic or a nonionic surfactant were not substantially different. In consideration of higher affinity for soils and higher sorption coefficients obtained, an emulsion containing Lauryl Dimethyl Benzyl Ammonium Chloride (LDBAC) was selected as a promising asphalt emulsion for treating diesel-contaminated soils. When the asphalt emulsion LDBAC was applied to treat three compounds that originated from diesel, the removal efficiencies obtained in the order of decreasing efficiencies were as follows: docosane > pentadecane > undecane. Leaching experiments on the specimen formulated by the emulsion LDBAC found that the selected treatment method could treat soils with diesel concentrations as high as 10,000 mg/kg. Leaching of the diesel from the specimen was controlled by diffusion for the first four days and then leaching rate diminished substantially. The latter behavior was characterized as depletion, which represents that the contaminant released amounts to more than $50\%$ of the total amount of the contaminant that can be leached. The amounts of three diesel compounds leached from the specimen in the order of decreasing amount were undecane, pentadecane, and docosane. The curing of the soil contaminated with pentadecane was relatively slow.