• Title/Summary/Keyword: 토양의 화학적 특성

Search Result 961, Processing Time 0.025 seconds

Monitoring on Chemical Properties of Bench Marked Paddy Soils in Korea (우리나라 논토양(土壤)의 화학적(化學的) 특성(特性) 분석(分析))

  • Jung, Beung-Gan;Jo, Guk-Hyun;Yun, Eul-Soo;Yoon, Jung-Hui;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.246-252
    • /
    • 1998
  • A survey was conducted to investigate the status of soils involving pH, electrical conductivity, total organic matter content, available phosphate and major exchangeable cations in the paddy soils sampled from 1,168 sites throughout the country. The content of soil chemical properties was lower on the average than the optimum levels for cropping. An average value showed pH 5.6, organic matter $25g\;kg^{-1}$, available phosphate $128mg\;kg^{-1}$, available silicate $72mg\;kg^{-1}$, and exchangeable potassium and the calcium and magnesium were 0.32, 4.0, $1.2cmol^+\;kg^{-1}$, respectively. Soil chemical properties was related with topography except soil pH. A soil pH and organic matter, available phosphate, exchangeable potassium increased with time while exchangeable calcium, magnesium available silicate decreased with time.

  • PDF

Studies on the Relation between Acid Deposition and Soil Chemical Properties in Forest Areas - Especially in Gyeongsangnam-Do Province - (산성강하물과 산림토양 화학성의 관련성에 관한 연구 - 경상남도 지역을 중심으로 -)

  • Lee, Chong-Kyu
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.260-267
    • /
    • 2008
  • This study was carried out to investigated the relation between air depositions and soil properties in Gyeongsanman province. Soil pH was average 4.40 in regions, and was the highest soil pH value in Miryang-sanne(pH 5.02), the lowest pH value in Namhae-seomyeon(pH4.08). Soil pH, soil organic matter content, avail phosphorus, K, Ca and cation exchange capacity(CEC) were significantly different among regions(p<0.05). Pb in Heavy metal content was 3.86mg/kg average value, and was the highest in Keo-je region(9.87mg/kg), the lowest in Mryang-sanne (0.86mg/kg). Zn, Cd, Cr and Ni were significantly different among regions(p<0.05). Correlation between rainfall pH and soil properties were positive in soil $pH(r=0.7826^{**})$, Ca$(r=0.6278^*)$, Mg$(r=0.5841^*)$, CEC$(r=0.6341^{**})$ and Cd$(r=0.5995^*)$, and were negative in Pb$(r=-0.5283^*)$. Correlation between $SO_2$ concentration and soil properties was negative in soil pH$(r=-0.6796^{**})$, Ca$(r=-0.5810^*)$, Mg$(r=-0.5522^*)$) and CEC$(r=-0.5905^*)$. Correlation between $NO_2$ concentration and soil properties were positive in organic matter $(r=0.6208^*)$, K$(r=0.5380^*)$. It was predicted that rainfall and $SO_2$ concentration would affect soil acidification, and soil heavy metal content related Cd and Pb. Others soil heavy metal were not related.

Effects of Organic Amendments on Soil Microbial Community in Red Pepper Field (시용 유기물의 종류가 고추 재배지 토양 미생물상에 미치는 영향)

  • Park, Kee-Choon;Kim, Yeong-Suk;Kwon, Oh-Hoon;Kwon, Tae-Ryong;Park, Sang-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Diverse organic amendments available in local areas have been used to improve soil quality in red pepper field and so the need for investigating the soil chemical and biological properties changed by the organic amendments application is increasing. Soil microbial diversities were measured by phospholipid fatty acid (PLFA) and Biolog $EcoPlate^{TM}$. Compost was most effective for improving soil chemical properties including pH, EC, total nitrogen, P, K, and Ca, and bark increased soil organic matter significantly (P=0.05). Compost increased the fatty acids indicating actinomycetes and vascular arbuscular fungi, and ratio of cy19:0/18:1w7c and monounsaturated fatty acids/saturated fatty acids in soils in PLFA analysis. Bark increased soil fungal indicators in PLFA analysis (P=0.05). Principal component analysis of Biolog EcoPlate data and PLFA differentiated the compost- and bark-amended soils from other organic matteramended soils especially the soil incorporated with compost. More researches are needed to use bark for improving soil microbial properties because the soil chemical and microbiological properties caused by compost and bark are significantly different.

Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding (담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화)

  • Kim, Jae-Gon;Chon, Chul-Min;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2008
  • Understanding the chemical characteristics of sediments and the nutrient diffusion from sediments to the water body is important in the management of surface water quality. Changes in chemical properties and nutrient concentration of a submerged soil were monitored for 6 months using a microcosm with the thickness of 30cm for upland soil and 15cm of water thickness above the soil. The soil color changed from yellowish red to grey and an oxygenated layer was formed on the soil surface after 5 week flooding. The redox potential and the pH of the pore water in the microcosm decreased during the flooding. The nitrate concentration of the surface water was continuously increased up to $8\;mg\;l^{-1}$ but its phosphate concentration decreased from $2\;mg\;l^{-1}$ to $0.1\;mg\;l^{-1}$ during flooding. However, the concentrations of $NH_4^+$, $PO_4^{3-}$, Fe and Mn in the pore water were increased by the flooding during this period. The increased $NO_3^-$ in the surface water was due to the migration of $NH_4^+$ formed in the soil column and the oxidation to $NO_3^-$ in the surface water. The increased phosphate concentration in the pore water was due to the reductive dissolution of Fe-oxide and Mn-oxide, which scavenged phosphate from the soil solution. The oxygenated layer played a role blocking the migration of phosphate from the pore water to the water body.

심부시추공 지하수의 심도별 지화학 특성

  • 최현수;고용권;김경수;배대석;김천수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.229-232
    • /
    • 2002
  • 대전 북부 화강암지역 내 심도 500m까지 굴착한 시추공에 다중패커 시스템(Multi-packer system)을 이용하여 구간별로 지하수 시료채취를 수행하고, 시추공 지하수에 대한 지화학 특성 연구를 수행하였다. 다중패커 시스템에 의해 구간별로 격리된 시추공 지하수의 수리화학자료는 구간별로 특징적인 화학조성을 나타낸다 다중패커 시스탬이 설치된 직후 채취한 지하수 시료와 일정시간이 경과한 후 채취한 시료간에는 시기별로 화학특성의 차이를 보이는데 이는 시추당시 사용된 시추수의 영향 때문인 것으로 사료된다. 또한 심도 115m를 기준으로 상부구간과 하부구간에 지화학 특성에서 큰 차이를 보이고 있는데 이는 시추공 굴착당시 단열대의 붕괴로 인해 시공된 그라우팅의 영향 때문이다. 이상치를 보이는 115m 구간을 제외하고, 시추공 지하수의 지화학 자료는 구간별로 명확히 구별되어 화강암 지역에서 지하수의 유동은 단열분포특성에 영향을 받음이 확인되었다.

  • PDF

Effects of a Biological Amendment on Chemical and Biological Properties and Microbial Diversity in Soils Receiving Different Organic Amendments (각기 다른 유기물이 투여된 토양에서 토양의 화학적, 미생물학적 특성과 미생물의 다양성에 미치는 생물비료의 효과)

  • Park, Kee-Choon;Kremer, Robert J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.234-241
    • /
    • 2007
  • Biological amendments consisting of suspensions of selected microorganisms are often used in conjunction with various organic materials for amending soils to improve soil quality and plant growth. The effects of the biological amendment on chemical and biological properties of soil were investigated for a biological amendmentalone and when combined with different organic materials includingmunicipal compost (MC), poultry litter (PL), and cover crops (red clover (RC) and spring oats). A liquid preparation of a biological amendment called Effective Microorganisms was sprayed on the tested plots three times over a two-year period. Effective Microorganisms alone did not influence pH, K, or organic matter content in soil. However, increases in P in PL-treated soils in fall of both years andCa in MC-treated soil in fall 2001, and decreases in Ca, Mg, and cation exchange capacity (CEC) in RC-planted soil were associated with EM. Increased dehydrogenase(DH) activitiesassociated with Effective Microorganismswere only detected in July (P=0.0222) and October (P=0.0834) for RC-planted soils in the first year. Fluorescein diacetate (FDA) hydrolysisappeared to be enhanced by Effective Microorganisms in soils untreated or treated with MC and oatsbut only sporadically during the sampling period. FDA hydrolysis in both PL- and RC-treated soils as well as DH activity in PL-treated soils decreased with Effective Microorganisms treatment. Effective Microorganisms did not influence substrate utilization patterns expressed by the BIOLOG assay. We conclude that Effective Microorganisms effects on soil chemical and biological properties varied depending on the added organic materials. Effective Microorganisms periodically increased soil DH activity and FDA hydrolysis with RC and with MC plus oats, respectively.

The Change of Soil Physicochemical Properties by Mixture Ratio of Inorganic Soil Amendments (무기성 토양개량제들의 혼합비율에 따른 토양이화학성의 변화)

  • Kim, Young-Sun;Kim, Tack-Soo;Ham, Suon-Kyu
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.271-278
    • /
    • 2009
  • This study was conducted to investigate the effect of the mixture ratio of the inorganic soil amendments on the soil physicochemical properties. In this experiment, three kinds of soil amendments which had similar pH, EC and particle size, the A, B and C, were tested. The mixture ratio of soil amendment were 0%, 3%, 5%, 7% and 10% (V/V) incorporated with sand which met to the USGA(United State of Golf Association) particle standard. To analyze the effects of amendment on chemical soil properties, pH, EC(electrical conductivity) and CEC(cation exchangeable capacity) were measured. The porosity, bulk density and hydraulic conductivity also measured to analyze the changes of physical properties. In the chemical properties, pH was significantly related to the mixture ratios of amendments, A and C(P<0.05), CEC and EC also related to the ratios of C(P<0.01). When the results were applied to the USGA standard of the soil physical properties, the optimum mixture ratios of each amendment were 3% in A and B, and 7~10% in C. To analyze the corelation of mixture ratio versus to physical character, volume of porosity was significantly related to the ratio of B (P<0.05), and showed similar corelation in porosity and hydraulic conductivity with ratio of C(P<0.05). These results indicate that types and mixture ratio of inorganic soil amendments should affect on soil physio-chemical properties of root zone on USGA sand green.

폐금은광산 주변지역의 수계내 하상퇴적물에서의 비소 용출 및 자연수의 오염특성

  • 이지민;전효택;이진수
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.89-92
    • /
    • 2003
  • 폐금은광산 지역은 토양, 작물 및 수계와 같은 지구화학적 환경에서의 비소의 부화가 환경오염의 특성으로 나타난다. 오염지역에 대한 시료채취 지점 상부에 존재하는 암석과 토양의 풍화산물인 하상퇴적물을 대상으로 하는 연구는 이들의 해당 집수지역에 존재하는 원소들의 평균 함량을 반영하므로 환경오염평가 및 광역지구화학도의 작성에 적절한 대상 시료로 사용되어 왔다. (중략)

  • PDF

Early Growth Characteristics of Quercus rubra Associated with Soil Physicochemical Properties and Meteorological Factors in Six Regions of South Korea (토양 물리·화학적 성질 및 기상인자에 따른 국내 6개 지역의 루브라참나무 초기 생장 특성)

  • Hwang, Hwan Su;Kim, Tae Lim;Oh, Changyoung;Lim, Hyemin;Lee, Il Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.357-364
    • /
    • 2022
  • We investigated the early growth characteristics of Quercus rubra planted in six regions (Hwaseong, Yangpyeong, Pyeongchang, Samcheok, Chungju, and Gimje) in South Korea in relation to soil physicochemical properties and meteorological factors. Q. rubra (1-0) were planted at a density of 3,000 trees ha-1. The average height, root collar diameter (RCD), and volume of 8-year-old Q. rubra planted in 2014 were 3.52 m, 3.84 cm, and 0.0023 m3, respectively. The growth parameters of Q. rubra were the highest and lowest in Hwaseong and Pyeongchang, respectively. Correlation analysis among the soil physicochemical properties, meteorological factors, and plantation growth characteristics found that pH was the only soil factor negatively correlated with RCD, and the other soil factors were not significantly correlated with the growth characteristics. However, growth characteristics were positively correlated to average temperature from March to October and daily maximum temperature; and they were negatively correlated to altitude, topology, and the number of rainy days from March to October. In particular, the trees planted in Hwaseong area showed the best early growth characteristics because this area had the highest daily maximum temperature, the x average temperature from March to October, the low altitude, and it is located close to the foot of a mountain. In Pyeongchang, the early growth characteristics were negatively affected by winter cold damage because of the high altitude, low daily minimum temperature, and damage by wild animals. In Hwaseong, meteorological factors such as temperature and altitude were more highly correlated to growth characteristics of Q. rubra than the physicochemical soil properties. These results will provide useful information for determining suitable sites for Q. rubra plantations and for predicting early growth characteristics in response to environmental factors.

Fe$^{\circ}$/$H_2$$O_2$시스템을 이용한 고농도 유류오염 미세토양의 화학적 산화처리

  • 장윤영;지원현;김지형;황경엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.34-37
    • /
    • 2001
  • 폐수처리분야에 널리 사용되어 온 펜톤산화반응을 응용한 Fe$^{\circ}$/$H_2O$$_2$시스템을 이용하여 고농도 유류오염 미세호양(100$\mu\textrm{m}$이하)의 화학적 산화처리 실험을 수행하였다. 반응은 100$m\ell$, 삼각프라스크에 오염토양(5g)과 반응시약을 주입한 후 자석교반기를 이용하여 회분 식으로 진행하였으며 일정 시간(0, 1, 2, 4, 8, 24hr)별로 TPH를 측정하였다. 그리고 각 조건별 시간에 따른 반응특성을 살펴보았다. 일반적으로 알려진 펜톤산화반응의 수요 반응조건인 초기 pH /$H_2O$$_2$ 및 Fe$^{\circ}$의 주입농도, 그리고 초기 디젤오염농도의 조건을 변화하며 각 조건별 처리효과를 알아보았다. 본 연구결과에서 최적 pH조건은 3인 것으로 나타났으며, 분말철(Fe$^{\circ}$)과 $H_2O$$_2$의 주입농도를 증가함에 따라 오염토양의 TPH 제거효율도 비례적으로 향상되었다. 초기오염농도에 따른 최종 처리효율은 큰 차이가 없었으나. 고농도 오염일수록 제거된 디젤의 총량은 크게 나타나. 본 논문에서 제시한 방법이 고농도 오염토양일수록 더 큰 효과를 얻을 수 있음을 보여주었다. 대부분의 반응이 반응개시 후 약 8시간 이내에 이루어졌는데, 반응에 수반되는 pH 상승과 그에 따른 반응성의 저감효과를 일정 pH 조절에 의해 감소시킴으로써 반응성의 향상을 좀 더 높일 수 있을 것으로 판단된다. 결론적으로, Fe$^{\circ}$/$H_2O$$_2$시스템을 이용한 화학적 산화처리방법은 경제성과 처리성능에서 고농도 유류오염 미세토양의 효율적인 처리방안으로서 향후 적용 가능성이 높을 것으로 기대된다.

  • PDF